
Self-Healing by Property-Guided
Structural Adaptation

Denise Ratasich, Thomas Preindl, Konstantin Selyunin, Radu Grosu
Technische Universität Wien

Vienna, Austria
Email: firstname.lastname@tuwien.ac.at

Abstract—Self-healing is an increasingly popular approach en-
suring resiliency, that is, a proper adaptation to failures, in cyber-
physical systems (CPS). A very promising way of achieving self-
healing is through structural adaptation (SHSA), by replacing
a failed component with a substitute component. We present a
knowledge base modeling relations among system variables given
that certain implicit redundancy exists in the system and show
how to extract a substitute from that knowledge base using guided
search. The result of our search, i.e., the substitute, is optimal
w.r.t. a user-defined utility function considering properties of the
system variables (e.g., accuracy). We demonstrate our approach
- Self-Healing by Property-Guided Structural Adaptation (SH-
PGSA) - by deploying it in a real-world CPS prototype of a
rover whose sensors are susceptible to failure. We further show
the increased runtime performance to find the optimal substitute
by comparing it to related work.

I. INTRODUCTION

Consider an autonomous car on the highway which tries to
avoid collisions with the car in front of it. Typically, such a car
uses range measurements (e.g., radar or laser) to emergency
stop when a safety margin is violated. The safety margin will
be chosen such that the car stops before crashing into the
obstacle considering its current velocity and distance towards
the car ahead. Observation components of a cyber-physical
system (CPS) – such as the range finder of the autonomous
car – may fail due to internal or external influences. Examples
are timing or concurrency issues (e.g., late data from the range
finder), hardware or software errors (e.g., missing commu-
nication link, platform/task crash), unexpected environmental
conditions (e.g., rain) or inappropriate usage (e.g., incorrect
mounting angle of the radar). Since these components provide
inputs to CPS controllers, the CPS may fail (the car crashes
into the car in front) or its performance, reliability or usability
may considerably decrease.

Hence we desire the service delivery or functionality to
persist even when facing unexpected failures in the underlying
sensor network. In other words, the system is desired to be
resilient to changes [1]. Possible fault-tolerance strategies [2]
applied to our example are as follows: i) Trigger the emergency
stop when the car detects a crash; ii) Switch to the acoustic
parking system in case of a failure [3]; iii) Add redundant
range finders and vote the nearest distance [4], [5]; iv) Design
an adaptive Kalman filter to fuse related distance sensors [6],
[7]. However, all these methods and many self-adaptation
techniques [8] have to be considered during design time and

will increase the complexity of the application, subsequently
leading to a more sophisticated design and test.

A CPS is typically assembled from subsystems of dif-
ferent manufacturers, each incorporating its needed sensors
and state estimation components. This often leads to implicit
redundancy, i.e., components of possibly different subsystems
observe related physical entities. We model the implicit redun-
dancy in a knowledge base and react to unexpected behavior
such as failures of observation components by adding a
substitute component during runtime. We refer to this approach
as self-healing by structural adaptation (SHSA).

In this paper, we propose a flexible and optimal SHSA. In
particular, our novel contributions are:
• We introduce a simple model for self-healing by exploit-

ing implicit redundancy that is able to incorporate user-
defined performance measures.

• We introduce an optimal substitute-search algorithm, we
call self-healing by property-guided structural adaptation
(SH-PGSA), that takes advantage of the model and is
guided by an associated performance measure.

• We present an exemplary utility function that returns the
optimal substitute first. We compare the runtime perfor-
mance of SH-PGSA with related work on an artificial, an
automotive and a real-world application. The real-world
application is an implementation on a rover prototype
performing reliable collision avoidance.

The rest of the paper is organized as follows. Section II gives
an overview of related work. Section III provides background
information to SHSA. Section IV describes the knowledge
base we use for SHSA. Section V presents SH-PGSA. Sec-
tion VI states an utility function, provides experimental results
and compares SH-PGSA to related work. Finally, Section VII
concludes by summarizing the results we have achieved and
outlines future work.

II. RELATED WORK

The authors in [9], [8], [2] give an overview to self-
adaptation, self-healing and fault-tolerance.

[10] introduces an ontology defining physical relations or
semantic equivalences between variables that can be shared
(e.g., laws of physics) and demonstrates SHSA which is
referred to as ontology-based runtime reconfiguration (ORR).
To execute SHSA on a specific application an instance of the
ontology – that is a knowledge base – has to be created. We

extend the knowledge base with properties and utility theory.
ORR substitutes a failed variable by depth-first search (DFS)
traversing the ontology until a substitute is found with the root
equal to the failed observation. This paper describes a guided
search and an utility function returning the best substitute first.

Similar models are used in other areas of adaptation. For
instance, the authors in [11] use ontologies and context in-
formation (cf. properties) to adapt sensor fusion. The SH-
PGSA knowledge base is also related to Bayesian networks.
In particular, it is a representation of a (deterministic) sensor
model which may be part of a dynamic Bayesian network
(DBN) [12]. The knowledge base of SH-PGSA is static, how-
ever, the variables and properties are actually random variables
of a CPS which may be described by a probability distribution.
Dynamic decision networks, that is an extension of DBNs with
utilities and decision nodes, are already considered for self-
adaptation [13], [14]. However, to the best of our knowledge,
only ORR and SH-PGSA exploit implicit redundancy.

The trend goes towards web-based technologies adopted for
CPS. For instance, the service-oriented architecture is applied
to a CPS platform to enable self-adaptation [15], [16]. The
resources and workflow models are adopted to self-manage
the system, i.e., running services w.r.t. the system requirements
and to increase efficiency [17], [18]. However, these methods
are still not ready to be used in real-time or safety-critical
systems since the approaches are typically non-deterministic
or lack real-time performance. Less flexible, but predictable,
methods switch between predefined configurations [3]. ORR
and SH-PGSA separate static and runtime information. An
upper bound for the execution time for the search in the static
structure of the knowledge base can be derived.

Instead of structural adaptation the parameters or the soft-
ware components themselves may be adapted, e.g., by chang-
ing the algorithm through parameters [19]. SH-PGSA ex-
ploits implicit redundancy of the variables exchanged between
components to setup a substitute, i.e., applies outside of a
component.

III. SELF-HEALING THROUGH STRUCTURAL ADAPTATION

Self-healing is the process of detecting and recovering
from failures in dynamic systems [8]. Contrast this to tradi-
tional fault-tolerance which is a design-time setup and cannot
therefore cope with unexpected failures. Self-healing adapts
the system during runtime in order to mitigate failures. In
this paper we search for a substitute candidate (Sec. V) for
the structural adaptation [19] which is performed on (sub-
) system level considering a component- or service-oriented
architecture.

A. Running Example

The running example is the autonomous car represented by
a mobile robot which tries to avoid collisions with humans
and objects. Our robot under test (Fig. 1) is equipped with a
Jetson TK1 running the Robot Operating System (ROS) [15]
and controlled via WiFi using a notebook. A ROS application
can be distributed into several processes so-called nodes which

Fig. 1. Mobile robot equipped with its sensors and processing units.

may run on different machines. Nodes communicate via a
message-based interface over TCP/IP. In particular, ROS nodes
subscribe and publish to ROS topics (cf. named channels).
ROS can start new nodes and reconfigure the communication
flow of existing nodes during runtime and is therefore suitable
for SHSA [16].

B. System Model

A CPS (e.g., our rover) consists of hardware and/or software
components (e.g., Jetson TK1, ROS nodes) connected via a
common network interface. We focus on adaptation in the
software cyber-part of a CPS Z (cf. hardware reconfiguration
or dynamic reconfiguration of FPGA). Hence, we assume
that each physical component comprises at least one software
component z (e.g., the driver of the laser range finder on the
rover) and henceforth consider software components only.

A system Z = {z1, .., zl} can be characterized by properties
referred to as system features, or simply as variables V (e.g.,
velocity or weight of our rover). The values of system variables
are communicated between components typically via message-
based interfaces. Such transmitted data that is associated to a
variable v, we denote as information atom [20], short itom v.
A variable can be provided by different components simulta-
neously (e.g., p redundant sensors). Itoms(v) = {v1, .., vp}
collects the itoms associated to the same variable v.

Each software component z executes a program P that uses
input itoms I and provides output itoms O (Eq. 1).

zi = (P, I,O) I = {v(i)1 , .., v(i)m } (1)

P : O = fi(I) O = {v(o)1 , .., v(o)n }

The CPS implements some functionality, a desired service
(e.g., collision avoidance). The subset of components imple-
menting the CPS’ objectives are called controllers Zctrl ⊂ Z.

An itom v is needed, when v is input of a controller, that
is, ∃z ∈ Zctrl | v ∈ z.I . A variable v is provided when at
least one itom exists (|Itoms(v)| ≥ 1).

Case Study (Fig. 2): The rover is tele-operated by the
controller znotebook publishing the desired velocity vcmd. The
distance to the nearest obstacle vdmin is evaluated by the
component zdmin calc using the laser range finder as input.
As soon as vdmin falls below a safety margin (for simplicity a
constant value) the robot’s verified desired velocity vsafe cmd

is set to 0. The component zrover uc applies vsafe cmd to
the motors and provides actual velocity, estimated position by
dead-reckoning and sonar range measurements.

zlaser zdmin calc

zsafeznotebook zrover uc

vlaser

vdmin

vcmd vsafe cmd

vvelocity
vposition

vsonar

Fig. 2. ROS nodes (components) communicating over ROS topics (itoms).

C. Failure Model

An itom v has failed, when the itom deviates from the
specification. We assume a monitor that detects such failures
and notifies SH-PGSA of failed itoms. SH-PGSA immedi-
ately starts to substitute a failed itom. In our experiments
we assume fail-silent itoms for simplicity, however, with a
suitable monitor (e.g., which is able to shutdown erroneous
components) also babbling idiots [2] (i.e., components that
provide wrong itoms) can be handled. Failures can propagate
from one component to another, i.e., a failed itom can lead to
further failed itoms.

Case Study: In our failure scenario the laser range finder
breaks. The itoms vlaser and vdmin (due to error propagation)
fail. However, the controller zsafe uses vdmin to avoid crashes.

D. Problem Statement of SH-PGSA

SH-PGSA shall substitute a needed but failed itom vf by
semantically equivalent itoms. In other words, search (Sec. V)
a suitable knowledge base (Sec. IV) to exploit implicit re-
dundancy. SH-PGSA has to find the best (i.e., given a user-
defined performance measure) function fs using itoms I as
input to calculate vf , and instantiate a substitute component zs
(substitute for short) that’s output is the itom vs ∈ Itoms(vf).

zs = (P, I,O) I = {v(i)1 , .., v(i)m } (2)
P : O = fs(I) O = {vs} vs ∈ Itoms(vf)

Note, that the substitute zs and subsequently its output vs
should further satisfy the system’s requirements regarding,
e.g., safety. The interested reader is referred to [10], [21].

IV. KNOWLEDGE BASE

This section defines the knowledge base used to describe
implicit redundancy, and adds utility theory to assess possible
substitute components.

A. Variables and Relations

Variables are related to each other. A relation r : vo =
f(VI) is a function or program (e.g., math, pseudo code or
executable python code) to evaluate an output variable vo from
a set of input variables VI . The relations can be defined by
the application’s domain expert or learned (approximated) with
neural networks, SVMs or polynomial functions (see [16]).

B. Structure

The knowledge base K = (V,R, E) is a bipartite directed
graph (which may also contain cycles) with independent sets
V of variables and R of relations of a CPS. V and R are the
nodes of the graph. Edges E specify the input/output interface
of a relation. In particular, vi is an input variable for r iff
∃(vi, r) ∈ E denoted as vi

e−→ r. vo is the output variable of
r iff ∃(r, vo) ∈ E denoted as r

e−→ vo. PredY (x) denotes the
predecessors of a node x in graph Y .

There are no bidirectional edges, i.e., if vi
e−→ r → 6 ∃r e−→

vi. Hence a variable is either input or output to a relation,
but never both. A relation can further have only one output
variable, i.e., for ∀j 6= i if r e−→ vi → 6 ∃r

e−→ vj .
The nodes alternate between variables and relations, i.e.,

variables are only connected to relations and vice-versa (bi-
partite). Note that relations have to be modeled as nodes, not
edges, because a variable is typically related to more than one
variable via a single relation.

C. Properties

Properties characterize an entity. A property p is identified
by a name (e.g., velocity) and a corresponding entity (e.g.,
rover). The function prop assigns a value to the property with
name name for a specific entity x. px,name = prop(x, name)
denotes the property value of a property name of entity
x. Props(x) = {px,name | ∃prop(x, name)} collects the
properties available for an entity x.

The knowledge base considers properties of relations, vari-
ables and itoms. The properties are used to distinguish and
assess these entities of the knowledge base.

Case Study: Properties of itoms, e.g., the accuracy or
sample rate of a sensor output, can be extracted from its
datasheet or estimated by experiments. Properties of variables
and relations may be the number of associated provided itoms
or the computational costs respectively.

D. SH-PGSA Properties

Apart from system-related properties, SH-PGSA uses spe-
cific predicates defining its own concepts, such as when is a
variable needed or provided.

prop(v,’need’) (3)

=

{
True if ∃ z ∈ Zctrl, v ∈ Itoms(v) | v ∈ z.I

False otherwise

prop(v,’provided’) = |Itoms(v)| > 0 (4)

If an itom of a variable v is directly used by a controller z,
the value of pv,’need’ is True (Eq. 3), otherwise False.
pv,’provided’ is True if the variable v is provided by at least
one itom (Eq. 4).

Note that all properties may change during runtime, e.g., a
sensor may be disconnected (affects pv,’provided’).

E. Substitution

A substitution s of vsink is a connected acyclic sub-graph
of the knowledge base with following properties: i) The output
variable is the only sink of the substitution (acyclic + Eq. 6).
ii) Each variable has zero or one relation as predecessor
(Eq. 7). iii) All input variables of a relation must be included
(Eq. 8; it follows that the sources of the substitution graph are
variables only).

s = (vsink,Vs,Rs, Es) (5)
vsink ∈ Vs,Vs ⊆ V,Rs ⊆ R, Es ⊆ E

∀x ∈ Rs ∪ Vs \ vsink ∃y ∈ Rs ∪ Vs | ∃x
e∈Es−−−→ y (6)

∀v ∈ Vs |Preds(v)| ≤ 1 (7)
∀r ∈ Rs ∀v ∈ PredK(r) | v ∈ Vs (8)

A substitution s is valid if all sources are provided, oth-
erwise the substitution is invalid. We denote the set of valid
substitutions of a variable v as S(v). Only a valid substitution
can be instantiated (to a substitute) by concatenating the
relations Rs to the function fs which takes selected itoms Is
as input (e.g., best itoms of the source variables).

F. SH-PGSA Utilities

An utility function collects the preferences of a system. As
a consequence, it can be used as the performance measure
of the system [12]. We use utility functions to asses each
valid substitution, i.e., to rank the substitutions to the best one.
Itoms, variables, relations and substitutions have all an utility.
The utility ux = u(Props(x)) of an entity x is a function of
all the entities’ properties.

In the knowledge base, a substitution s has no separate
properties, but only includes the properties of used itoms,
variables and relations.

us = u(Props(s)) = u(p1, .., pp) (9)
pi ∈ Props(x), x ∈ {Is, s.Vs, s.Rs}

The optimal or best substitution sbest =
argmaxs∈S(vsink)

us of a set of valid substitutions S(vsink)
for a variable vsink is the substitution with the highest utility.

G. Case Study

The SH-PGSA knowledge base of our running example is
depicted in Fig. 3. When the laser range finder crashes, the
itoms vlaser and vdmin fails. The itom vdmin is needed (input
to controller zsafe) and therefore shall be substituted. Hence,
we have to find a substitution with sink node vdmin (see Fig. 4
for examples).

V. IMPLEMENTATION

A needed and failed itom is first mapped to a variable vsink
in the knowledge base. If vsink is unprovided, Algorithm 1
searches for the best substitution sbest with sink node vsink.

bumper

rdb

current

rda

dmin

laser

rdl

map

rdm

position

rpv

rds

velocity sonar

Fig. 3. Exemplary knowledge base of the mobile robot. Boxes are relations.
Ellipses are variables (suppressed v and r for readability). Encoding: blue
- provided variables; red - variables where itoms failed; black - unprovided
variables.

(a) sonar rds dmin

(b) position

current

rpv velocity

rda dmin

Fig. 4. (a) A valid substitution, because all source variables are provided.
(b) The source variable vcurrent is not provided and leads to an invalid
substitution.

Algorithm 1 SH-PGSA
1: procedure SUBSTITUTE(vsink)
2: W ← { NewWorker(vsink) } . set of workers
3: while W 6= ∅ do
4: while W [0].HASNEXT() do
5: Wnew ←W [0].NEXT() . continue ...
6: W ←W ∪Wnew . and add new workers
7: SortByUtility(W)
8: end while
9: if Successful(W [0]) then . best worker done

10: return W [0].s
11: end if
12: W ←W \W [0]
13: end while
14: return ∅ . no substitution found
15: end procedure

SH-PGSA (Alg. 1) finds possible substitutions for vsink
similar to a breadth-first search. An object called worker is
used to construct a substitution. The internal data of a worker
comprises:
• unprovided variables V ,
• possible relations per unprovided variable

R[v] = PredK(v) ∀v ∈ V ,
• (possibly incomplete) substitution s and
• the knowledge base and utility function.

A worker can be initialized by the unprovided variable(s) to
substitute next, or relations per variable to proceed. The first
worker starts from the sink node vsink (Alg. 1:2). The best
worker W [0] is always on turn (by Alg. 1:7). The worker pro-
ceeds step by step (calling its method NEXT) by substituting its
unprovided variables as long as the unprovided variables have
relations as predecessors (checked in HASNEXT). The worker
has finished successfully when its underlying substitution s is
valid (Alg. 1:9). However, the worker may also abort, if an
unprovided variable cannot be substituted. In this case the next
worker will get on its turn (Alg. 1:12).

Algorithm 2 Worker’s method HASNEXT

1: function HASNEXT()
2: if V = ∅ then
3: return False . no unprovided inputs, done
4: end if
5: R← ∅ . collect possible relations per variable
6: for v ∈ V do
7: R[v]← PredK(v) \ s.Rs

8: if R[v] = ∅ then . no substitution for v
9: return False . stop worker

10: end if
11: end for
12: return True . unprovided inputs can be substituted
13: end function

HASNEXT (Alg. 2) checks if there are unprovided variables
V to substitute (Alg. 2:2) and collects all possible relations per
variable R[v] (Alg. 2:7). Each unprovided variable v ∈ V has
to be substituted. If this is not possible, the worker aborts
(Alg. 2:9). The substitution of the worker is then invalid.

If the worker can proceed (Alg. 2 returns True), the
worker’s method Next is called (Alg. 3).

Algorithm 3 Worker’s method NEXT

1: function NEXT()
2: C = Product(R) . create combinations of relations
3: s.Rs ← s.Rs ∪Best(C) . add best combination
4: W ← ∅ . create workers for others
5: for c ∈ C \Best(C) do
6: W ←W ∪NewWorker(c)
7: end for
8: V ← ∅ . collect inputs for added relations
9: for r ∈ Best(C) do

10: V ← V ∪ PredK(r)
11: end for
12: V ← Unprovided(V) . filter vars to substitute next
13: return W
14: end function

NEXT (Alg. 3) performs a combinatorial product C on
the possible relations (Alg. 3:2) collected by HASNEXT.
A combination is a set of relations c = {r1, .., rn} with
|c| = |V | that selects a relation for each unprovided variable,
i.e., ri ∈ R[vi] for i = 1..n. The worker proceeds with the

best combination Best(C) (Alg. 3:3). The best combination
is the combination c ∈ C that leads to the highest utility when
added to s. For other possible combinations, new workers
are created1 (Alg. 3:6) and returned. The unprovided inputs
collected from the relations in Best(C) are used to continue
(Alg. 3:8-12). Figure 5 visualizes the NEXT step.

VI. EXPERIMENTS

SH-PGSA shall return the best substitution in minimal
runtime. This section defines an exemplary flexible utility
function that is optimal for the presented use cases and ensures
that the first substitution returned is the best one (next two
sections). Furthermore, the runtime of SH-PGSA is evaluated
(w.r.t. size, connections, itoms in different knowledge bases
and the use cases) and compared to ontology-based runtime
reconfiguration (ORR) [10] and depth-first search (DFS). The
experiments use the implementation of SH-PGSA2 in Python
and the ROS application3 of obstacle avoidance. The evalua-
tion is executed on a notebook with quad-core i7 2.1GHz and
8GB RAM.

A. Utility Function

Performance is a user-defined and application-dependent
amalgamation of the various properties. We picked the optimal
one for the presented use case. Equation 9 defines the utility
of a substitution in general. However, we define the utility of
a substitution hierarchically (Eq. 10) and in a way such that
the utility can be computed efficiently.

us =
∏

r∈s.RT

ur (10)

ur =
∑

px,name

wi u(px,name) x ∈ r ∪ PredK(r) (11)

We use normalized utilities (best utility u> = 1, worst utility
u⊥ = 0). By requesting the utility of a relation to be less
than one, we can penalize the number of relations. Note that
us is monotonically decreasing with the number of relations.
The product in Eq. 10 further enables an iterative calculation
of the utility. Moreover, the best combination Best(C) can
be selected by considering the relations to be added only:
Best(C) = argmaxc∈C

∏
r∈c ur.

The utility of a relation is a weighted sum of utilities of
properties of the relation and predecessor/input variables. In
particular, the utility function of a relation uses the properties
pr,’|vin|’, pr,’|vunprovided|’ and pv,’accuracy’.

prop(r,’|vin|’) = |PredK(r)| (12)
prop(r,’|vunprovided|’) (13)

= |{v ∈ PredK(r) | prop(v,’provided’) = False}|
prop(v,’accuracy’) (14)

= argmaxv∈Itoms(v) pv,’accuracy’

1Note that the actual implementation does not instantiate a new worker
before it is needed - to save memory.

2https://github.com/dratasich/shsa
3https://github.com/dratasich/shsa ros

(a)

W [0]

(b)

W [0] W [1]

(c)

W [0] W [1] W [2] W [3] W [4]

Fig. 5. Underlying substitutions of the workers executing NEXT() (encoding: provided variables and selected relations are filled). (a) Initial set of workers
that is a single worker starting from the sink node. W[0].HASNEXT() identifies the two possible relations. (b) W[0].NEXT() chooses the left relation reaching
two unprovided variables and returns another worker for the right relation. (c) W[0].NEXT() selects the best combination and returns additional three workers.

The utility functions of the properties are given in Equa-
tions 15 to 17.

u(pr,’|vin|’) =
1

pr,’|vin|’
(15)

u(pr,’|vunprovided|’) =
1

pr,’|vunprovided|’ + 1
(16)

u(pv,’accuracy’) = pv,’accuracy’ (17)

The utilities of properties pv,’|vin|’ and pv,’|vunprovided|’
guide the search to relations with less variables to substitute.
Provided variables with higher accuracy are preferred (the
accuracy is directly specified as a value between 0 and 1,
for simplicity). The weights have been selected such that our
preferences match the results of SH-PGSA (cf. training of
utility function by so-called preference elicitation).

B. First Substitution is Optimal

Considering the utility function described above: The first
substitution returned is the optimal one. Outline of a proof:
The best worker is always on turn (it has the highest utility)
and therefore finishes first. Once it is finished, other workers
cannot return a better substitution, i.e., with higher utility.
Because an unfinished worker has unprovided variables to
substitute, hence relations have to be added to finish, which
decrease the utility (utilities of substitutions are monotonically
decreasing by Eq. 10 and ur ≤ 1).

C. Runtime Performance

Table I shows the measured execution time of the different
algorithms to substitute the failed itom given a model.

The use cases under test are our rover and an automotive
drivetrain which model is given in [10] (failure scenario:
steering angle sensor breaks). In addition, we create random
trees (constraints of Sec. IV-B) to evaluate the effect of the
depth and branching factor of a knowledge base on the exe-
cution time of the substitute search (recall: more unprovided
input variables give more possible combinations, i.e., possible
substitutions). All paths lead to a valid substitution, i.e., all
leaves are provided.

ORR and SH-PGSA (best) return as soon as a valid sub-
stitution is found. DFS searches the whole knowledge base
and is therefore able to return all possible solutions including

TABLE I
AVERAGE TIME (IN MS OUT OF 100 EXECUTIONS) OF FIRST, BEST OR ALL

SUBSTITUTIONS RETURNED GIVEN A MODEL.

Model ORR SH-PGSA (best) DFS

Rover 0.10 0.21 0.53
Drivetrain 0.15 0.30 0.73
Balanced8 noU 1.56 823.22 21840

the optimal one. ORR is an efficient DFS implementation that
stops at the first valid substitution without the overhead of
calculating any utility or using objects introduced for SH-
PGSA. It therefore leads to a fast result. However, SH-PGSA
outperforms DFS to find the optimal substitution. Note that
the setup of the substitute component typically takes much
longer than the search (e.g., it takes about 500ms to start a
ROS substitute [16] on the platform used for the experiments
given in Table I).

Balanced8 noU simulates following knowledge base: A
balanced tree with constant branching factor b = 2 and depth
d = 8 where nodes have equal(= no) utility. Note that a
balanced graph with branching factor 2 and a depth of 8
nodes has already 32768 possible substitutions. SH-PGSA will
perform a breadth-first search (BFS). Because the utilities
of relations are equal, and decrease with depth the worker
will change in every step. SH-PGSA (best) is in this case
significantly slower than ORR.

However, when introducing random utilities and randomly
provided itoms, varied depth and branching, SH-PGSA out-
performs ORR (besides DFS) (Fig 6, Fig. 7; bar: standard
deviation; ’x’: max outliers).

Due to the combination of relations (Alg. 3), the number
of possibilities increases exponentially with the number of un-
provided variables, or in general with bd (true for all presented
algorithms). ORR is suitable to find a first substitution very
fast in a knowledge base that has negligible differences in
utility (constant branching factor, constant costs of nodes).
However, SH-PGSA will find a solution which is also the
best substitution faster in average graphs. This is due to the
utility function that guides the search to less input variables
and variables that are provided.

To increase the performance, the workers can be paral-

0 2 4 6 8 10 12 14 16
depth

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
ti

m
e
 (

s)

SH-PGSA (best)
ORR
DFS

Fig. 6. Average time (in s out of 10 executions of 100 different models each
with constant branching factor b = 2) until the first substitution is returned.

0 1 2 3 4 5
branching factor

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ti
m

e
 (

s)

SH-PGSA (best)
ORR

Fig. 7. Average time (in s out of 10 executions of 100 different models each,
with constant depth d = 8) until the first substitution is returned.

lelized (i.e., separated into n threads working on the best n
substitution possibilities, e.g., using Python coroutines). The
utility function provides also means to further the decrease
the runtime of the search, e.g., by including the distance to
provided variables. With such a utility function, SH-PGSA
can be compared to the A* algorithm which uses the distance
to the target to guide the search and is a commonly used
algorithm in path planning (note, a proper heuristic has to be
defined to remain correct, i.e., still find the optimal solution
for every input).

VII. CONCLUSION

Assemblies of CPS subsystems lead to more data which
is often highly interrelated or even redundant. We present a
knowledge base to model and an algorithm to exploit implicit
redundancy in such systems to substitute failed observation
components, considering system properties. The algorithm
considers a user-defined flexible performance measure to guide
the search. It has been shown that SH-PGSA significantly
decreases the average execution time until a substitution is
found and returns the optimal substitution first.

In ongoing and future work we will use the knowledge
base for monitoring and sensor fusion. For instance, a subset
of variables and relations may be chosen to compare signals
against each other, or to fuse a system variable to decrease
its variance. Furthermore, the knowledge base shall be able to
handle state-based variables and the algorithm shall consider
constraints, e.g., system requirements, on substitutes.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the IoT4CPS project partially funded by the “ICT of the
Future” Program of the FFG and the BMVIT.

REFERENCES

[1] J.-C. Laprie, “From Dependability to Resilience,” in Dependable Sys-
tems and Networks (DSN 2008), 38th Annual IEEE/IFIP International
Conference, 2008.

[2] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed. New York: Springer, 2011.

[3] R. Adler, D. Schneider, and M. Trapp, “Engineering Dynamic Adap-
tation for Achieving Cost-Efficient Resilience in Software-Intensive
Embedded Systems,” in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on, March 2010,
pp. 21–30.

[4] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redun-
dancy to Improve Computer Reliability,” IBM Journal of Research and
Development, vol. 6, no. 2, pp. 200–209, April 1962.

[5] D. Kim and R. Voyles, “Quadruple adaptive redundancy with fault
detection estimator,” in 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), Aug 2017, pp. 542–547.

[6] R. Mehra, “On the identification of variances and adaptive kalman
filtering,” IEEE Transactions on Automatic Control, vol. 15, no. 2, pp.
175–184, April 1970.

[7] H. Mitchell, Multi-Sensor Data Fusion - An Introduction. New York:
Springer, 2007.

[8] H. Psaier and S. Dustdar, “A survey on self-healing systems: approaches
and systems,” Computing, vol. 91, no. 1, pp. 43–73, Jan 2011.

[9] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and X. Yao, Eds.,
Self-aware Computing Systems: An Engineering Approach, ser. Natural
Computing Series. Springer, 2016.

[10] O. Höftberger, “Knowledge-based Dynamic Reconfiguration for Em-
bedded Real-Rime Systems,” Ph.D. dissertation, Technische Universität
Wien, 2015.

[11] E. Martı́, J. Garcı́a, and J. M. Molina, “Adaptive sensor fusion architec-
ture through ontology modeling and automatic reasoning,” in 2015 18th
International Conference on Information Fusion (Fusion), July 2015,
pp. 1144–1151.

[12] S. Russel and P. Norvig, Artificial Intelligence - A Modern Approach,
3rd ed. Upper Saddle River, New Jersey: Pearson Education, 2010.

[13] N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision networks
for decision-making in self-adaptive systems: A case study,” in 2013
8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), May 2013, pp. 113–122.

[14] H. C. Lee and S. W. Lee, “Decision Supporting Approach under
Uncertainty for Feature-Oriented Adaptive System,” in 2015 IEEE 39th
Annual Computer Software and Applications Conference, vol. 3, July
2015, pp. 324–329.

[15] Open Source Robotics Foundation, Inc., “Robot Operating System
Wiki - Introduction,” Available at http://wiki.ros.org/ROS/Introduction,
accessed 2017-10-05, 2017.

[16] D. Ratasich, O. Höftberger, H. Isakovic, M. Shafique, and R. Grosu,
“A Self-Healing Framework for Building Resilient Cyber-Physical
Systems,” in 2017 IEEE 20th International Symposium on Real-Time
Distributed Computing (ISORC), May 2017, pp. 133–140.

[17] C. Legat and B. Vogel-Heuser, An Orchestration Engine for Services-
Oriented Field Level Automation Software. Cham: Springer Interna-
tional Publishing, 2015, pp. 71–80.

[18] W. Dai, V. N. Dubinin, J. H. Christensen, V. Vyatkin, and X. Guan,
“Toward Self-Manageable and Adaptive Industrial Cyber-Physical Sys-
tems With Knowledge-Driven Autonomic Service Management,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 2, pp. 725–736, April
2017.

[19] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems. Berlin, Heidelberg: Springer Verlag, 2009, pp. 1–26.

[20] H. Kopetz, “A Conceptual Model for the Information Transfer in
Systems-of-Systems,” in 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
June 2014, pp. 17–24.

[21] T. Amorim, D. Ratasich, G. Macher, A. Ruiz, D. Schneider, M. Driussi,
and R. Grosu, Runtime Safety Assurance for Adaptive Cyber-Physical
Systems: ConSerts M and Ontology-Based Runtime Reconfiguration
Applied to an Automotive Case Study. Hershey, PA: IGI Global, 2017,
pp. 137–168.

