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Abstract— The exponential growth of cyber-physical systems 

(CPS), especially in safety-critical applications, has imposed 

several security threats (like manipulation of communication 

channels, hardware components, and associated software) due to 

complex cybernetics and the interaction among (independent) 

CPS domains. These security threats have led to the development 

of different static as well as adaptive detection and protection 

techniques on different layers of the CPS stack, e.g., cross-layer 

and intra-layer connectivity. This paper first presents a brief 

overview of various security threats at different CPS layers, their 

respective threat models and associated research challenges to 

develop robust security measures. Moreover, this paper provides 

a brief yet comprehensive survey of the state-of-the-art static and 

adaptive techniques for detection and prevention, and their 

inherent limitations, i.e., incapability to capture the dormant or 

uncertainty based runtime security attacks. To address these 

challenges, this paper also discusses the intelligent security 

measures (using machine learning-based techniques) against 

several characterized attacks on different layers of the CPS stack. 

Furthermore, we identify the associated challenges and open 

research problems in developing intelligent security measures for 

CPS. Towards the end, we provide an overview of our project on 

security for smart CPS along with important analyses.   

Keywords— Cyber-Physical Systems, CPS, Machine Learning, 

Neural Networks, Deep Learning, DNNs, Security, Attacks, Static 

and Dynamic Techniques, Attack Surface, Autonomous Vehicle, 

Intelligent Measures.  

I. INTRODUCTION 

The rapid advancements in communication, computing, and 
physical control systems have enabled the cyber world to 
integrate and closely interact with the physical domain that leads 
to Cyber-Physical Systems (CPS) [1]. CPS is the integration of 
embedded computing devices, smart objects, people and 
physical environments, which are tightly coupled via 
communication networks [2]. Typically, CPS collects the 
information from the physical domain and analyzes it to issue 
the appropriate control commands, as shown in Fig. 1. Due to 
their ability to control the state of the systems, with respect to 
the physical characteristics, these systems are being widely used 
in several safety critical domains, e.g., intelligent traffic control 
and infrastructure management (Smart Cities), healthcare, 
transport systems, industrial automation (Smart Factories), 
power distribution and generation (Smart Grids),  autonomous 
vehicles (Smart Cars) and automated houses (Smart Buildings, 
Smart Homes) [3][4]. Fig. 1 shows the different physical (i.e., 
acceleration, gearbox, steering, airbag, light, braking, charging 
and tire measurement controls) and cyber components (i.e., 
vehicle-to-vehicle communication, GPS tracking/navigation, 

Wi-Fi, Bluetooth connectivity of multiple devices) in smart 
autonomous vehicles.  

 
Fig. 1. Key features of a CPS and for an example of Smart Autonomous 

Vehicle. Red-line in this figure separates the Cyber and physical worlds. 

 
Fig. 2. Examples of Security Threats in Smart Autonomous Vehicles. 

The massive integration of cyber domain (i.e., networked 
computing devices), physical domain (i.e., actuators) and 
humans are playing a significant role in the rise of the Internet-
of-CPS-Things, where different cyber-physical sub-systems are 
integrated to realize high-end smart services [1]. However, these 
systems are becoming more and more vulnerable to various 
security threats at different layers of the hardware and software 
CPS stacks, covering both computation and communication 
layers. Consequently, several security incidents related to 
physical and hardware attacks on the cyber-physical systems 
have been reported in real-world. Some of the most prominent 
incidents are city water pipeline [5], pacemaker [6], ABS wheel 



speed sensor spoofing in smart cars [19] and several industrial 
attacks [7][8][9]. Fig. 2 shows some of the possible cyber (i.e., 
packet injection, GPS traceability, communication software and 
Bluetooth authentication flaws) and physical attacks (gain 
control attacks) in smart autonomous vehicles. At the same time, 
security features need to be adaptive yet energy-efficient to 
account for unpredictable operational scenarios, even years after 
the manufacturing and deployment of an autonomous vehicle 
will stay in the field for several decades. Therefore, such systems 
have to meet stringent design requirements in terms of security, 
adaptability [10], dependability [11], and energy efficiency [3]. 
Moreover, the security features need to be intelligent to combat 
with various attack models, which could even be unforeseen at 
the design time. 

This paper makes the following novel contributions:  

1) A brief yet comprehensive overview of the CPS security 
including various security threats at different CPS and their 
respective threat models. 

2) Highlights of the associated research challenge to develop 
robust security measures for security threats at different CPS 
layers. 

3) A brief survey of the state-of-the-art security measures along 
with a discussion on their pros and cons. 

4) An overview of our project on intelligent security measures 
for smart CPS (Sec4SCPS) along with important analyses. 

Paper Organization: Section II provides a brief overview of 

inter-/intra-layer security threats and the respective threat 

models. Section III highlights the design challenges for 

developing secure smart CPS. Section IV discusses and 

identifies the key limitations of the traditional, adaptive and 

intelligent security measure for smart CPS. V provides a brief 

overview of our on-going project on the intelligent security 

measures for smart CPS, following by the conclusion in Section 

VI. 

II. SECURITY FOR CPS 

In order to provide the better understanding of the security 

measures for CPS, in this section, we provide a brief overview 

of several security attacks/vulnerabilities with respect to CPS 

layers, their respective payloads, and associated threat models.   

A. Security Threats in CPS 

Unlike the traditional systems, the security threats in CPS are 
also dependent on the uncertain behavior of physical domain 
which led to several safety and security critical scenarios in the 
physical domain [4][12]. Therefore, it is required to categorize 
the security threats for effective security measures. Based on the 
CPS layers, the security attacks can be categorized as follow 
(see: Table 2, that summarize some of the possible and real-
world attacks on each CPS layer [13]):   

1) In the physical layer, an attacker can launch direct 
intervention or destruction the physical objects to monitor 
and control, the sensors and controller which results in 
inaccurate sensed measurements [14], incorrect control 
decisions, and inappropriate actuator actions, as shown in 

Fig. 3. Table Table 1 provides some examples of physical 
attacks in smart grids, smart cars, and smart healthcare.  

TABLE 1. EXAMPLE OF THE PHYSICAL ATTACKS ON SMART GRIDS, SMART 

HEALTHCARE, AND SMART CARS 

Application Attack Description 

Smart Grids 

Natural Threats 
In 2014, wild animals cause 

150 blackouts in the US [18]. 

Accidental Threats 
In US, cars hitting the 
transmission line cause the 

356 blackouts in 2014 [18]. 

Material theft 
Copper wire theft caused the 
blackout [18]. 

Smart Healthcare Acquiring unique IDs Obtaining devices IDs [19] 

Smart Cars 
ABS wheel speed sensor 
spoofing 

Disruption of the magnetic 

field around the sensor 
introduces the incorrect 

measurements [19]. 
 

 
Fig. 3. CPS Architecture and Intra Layer Security Threats 

2) The security of sensor/actuators networks is one of the key 
components of CPS, which is mostly ignored in CPS security 
[15]. However, the confidentiality and sensitivity of the 
sensed/measured data make it one of the most vulnerable 
layers with respect to the security threats (i.e., privacy) [16]. 
There are the following possible ways to attack this layer:  

a. An attacker can destroy/hack the sensors/actuators with 
brute force attacks to extract the sensitive information 
from the sensors/actuators (e.g., secret keys, side channel 
parameters), and can also modify/manipulate them [17].  

b. An attacker can hack the power distribution mechanisms 
of sensor/actuators to drain the energy for denial-of-
service attacks or to use that energy to activate the 
malicious circuitry/payloads [17].  

 



TABLE 2. SECURITY THREATS AT DIFFERENT CPS LAYERS [13] 

Layers Attacks Details Attack type 

Physical Layer Direct intervention and damages Changes the hardware or mechanical parts to damage the system. 
Denial-of-service, half-
life reduction 

Sensor/Actuator 
Layer 

Node hacking Leakages the information directly from sensors/actuator via RF signals. Information leakage 

Node destruction Destructs, extracts, or modifies node physically. Denial-of-service 

Energy stealing/draining Quickly drains out the limited power of sensors/actuators. Denial-of-service, 

Cryptographic attacks 
Cracks secret keys with brute force, dictionary, monitoring, or side channel 

analysis. 
Information leakage 

Network Layer 

Replay Forwards message to an incorrect destination or with a delay. 
Timing attacks, 
information leakage 

Communication Jamming Halts the on-going communication. Denial-of-service 

Data Flooding in communication Inserts the bogus data into the established communication to overload the system. Denial-of-service 

Sybil An adversary illegitimately takes on multiple identities 
Denial-of-service, 

information leakage 

Spoofing and altering the 

communication information 
Changes routing information illegitimately 

Denial-of-service, 

information leakage 

Wormhole Disrupts the routing Denial-of-service 

Selective communication Disrupts the on-going communication and sends only selective data 
Denial-of-service, 
information leakage 

Control Layer 

Controller hacking Hacks the controller to perform malicious activities 

Denial-of-service, 

information leakage, 
timing attacks 

Control signal hacking Interrupts and manipulate the control signals to perform malicious activities 

Denial-of-service, 

information leakage, 
timing attacks 

Information Layer Privacy Steal information from eavesdropping and traffic analysis Information leakage 

 

a. In case of the sensors/actuators-based security keys, an 
attacker can extract the key using brute force, dictionary 
attack or monitoring attack [17]. 

3) Typically, the security threats in the network layer of CPS 
are related to the communications [19]. There are two major 
types of networking attacks; 1) Replay Attack: in this attack, 
the message is forwarded to an incorrect destination, or to the 
destination with a delay [22]. 2) Denial of service (DoS): in 
this attack, a malicious event can diminish or eliminate the 
network capacity to perform its expected functions [23]. DoS 
can further be divided into following attacks: 

a. Jamming: In this attack, an attacker can jam a node or a 
group of nodes by signal interference [24]. 

b. Collision: In this attack, an attacker can force the system 
to violate the communication protocols and continually 
transmit messages to generate inconsistencies [23]. 

c. Routing ill-directing: In this attack, an attacker can force 
the system to refuse the route messages in terms of the 
nature of multi-hop communications[23]. 

d. Flooding: In this attack, an attacker can send unnecessary 
connection requests to a vulnerable node [23]. 

e. Wormhole: In this attack, an attacker can create a well-
placed wormhole for disrupting the network routing [23]. 

f. Selective forwarding: In this attack, an attacker can force 
the intruded node to forward the messages selectively to 
disrupt the data transmission. For example, Sybil attack 
[25]  is done by such adversary that illegitimately takes 
multiple identities to reduce the availability of a network 

by spoofing, altering, and replaying routing information 
[23]. 

4) Typical security threats in the control layer of CPS are from 
desynchronization [26] because control mechanisms are 
highly dependent on timeliness. Therefore, a slight 
desynchronization in the control units/signals can be 
considered as catastrophic because of the sudden incorrect 
decisions can lead to CPS failures. 

5) At the information layer, most of the attacks perform 
information stealing by either eavesdropping or analyzing 
the traffic data. However, the manipulation [79] of the key 
information/data can also be used to perform other attacks, 
i.e., jamming, collision, denial of services, etc.  

B. CPS Security Threat Models 

To develop the security measures against any security 
vulnerabilities, the first step is to define the threat model for 
getting the better understanding of the attack strength and 
attacker capabilities. In CPS, an attack is defined as a sequence 
of events that force the CPS to deviate from it's anticipated or 
specified execution flow, with the intention of breaching one or 
more security objectives [27], i.e., confidentiality, integrity and 
authenticity of control commands and availability of the CPS. 
Therefore, to define a certain threat model, the following factors 
have to be identified for a particular attack: 

1) Source/Attacker: It is defined as anything which can disturb 
or interrupt the behavior or functionality of the CPS [27]. It 
is not necessary that an attacker can only be an organization, 
individual or state/nation because all the accidental events 
and environmental disasters can also be considered as a 
source of an attack. 



2) Target: It is defined as the targeted layer or device that a 
source is trying to get the access [27].  

3) Motive: It is defined as the reasons to launch an attack, i.e., 
criminal, spying, terroristic, political, or cyberwar [27].  

4) Attack Vector: It is defined as the mechanisms that can be 
used to perform successful attacks, i.e., interception, 
interruption, modification, and fabrication [27]. 

5) Payload: It is defined the consequences of the successful 
attacks, i.e., confidentiality, integrity, availability, privacy, 
or safety [27]. Some of the possible payloads related above-
mentioned security attacks are following: 

a) Availability: In this payload, an attacker can get the 
access to the control units/signals for making the 
system/data unavailable for each other [2][28][29].   

b) Timing Constraint: In this payload, an attacker can 
interrupt the computations/executions of the task to miss 
the completion deadline [30].  

c) Eavesdropping: In this payload, an attacker observes 
the CPS operations without any interference [28]. 

d) Compromised-Key: In this payload, an attacker can get 
a secured communication without the perception of 
sender or receiver by using the compromised key [29]. 

e) Denial-of-Service: In this payload, an attacker can block 
the communication (by overloading the traffic) or halts 
system operations. 

III. DESIGN CHALLENGES FOR SECURITY MEASURES OF 

CYBER-PHYSICAL SYSTEM 

The security threats and vulnerabilities discussed in Section 
II.A have raised the following key research challenges to design 
the secure CPS: 

1) Security by Design: Due to exponential growth in usage of 
CPS and faster time to market, the security threats are not 
being considered as the fundamental design challenges in 
CPS design cycle [31]. Though several security measures are 
being introduced, most of them are focused towards the 
cyber-attacks. However, the intentional (malicious intent) or 
unintentional (natural or environmental disaster) physical 
attacks pose several critical design concerns. In results, a key 
question arises that how to embed the physical security 
measures during the CPS design cycle?   

2) Real-timeliness Nature: Typically, the CPS are being tested 
and analyzed for the security vulnerabilities during the 
design stage or before the deployment stage (post-fabrication 
testing stage). However, several unforeseen (natural, 
environmental or accidental disasters) and intentional threats 
can occur during the runtime [32]. In order to apply certain 
security measures during the runtime, it is crucial to 
introduce the runtime detection and decision capability in the 
CPS. However, due to resource constraints and energy 
budget, it limits the scope of runtime security measures 
which raises a fundamental research question that how to 
design a certain runtime security measure with maximum 
coverage of security vulnerabilities while considering the 
resource constraints and energy budget?  

3) Secure Integration: Typically, the CPSs are very complex 
and involve several stakeholders, especially, in the 
integration of heterogeneous cyber-physical devices. This 
heterogeneity makes it very challenging to integrate such 
variety of cyber-physical components in a secure way. 
Therefore, a research question arises that how to ensure the 
secure integration of several heterogeneous cyber-physical 
devices to develop the secure CPS?  

4) Privacy: Most of the CPSs measured or sensed confidential 
information through different sensors and communicate this 
data to several devices via multiple communication channels 
which leads to a very critical security challenge, i.e., privacy. 
Therefore, a key research question arises that how to ensure 
privacy the information while measuring it from sensors and 
securely communicate it to other cyber-physical devices?  

IV. SECURITY MEASURES OF CPS 

 To address the design challenges that are mentioned in 
Section III, for developing the secure CPS, several security 
measures have been proposed. Depending upon the 
methodologies, we have categorized them into following two 
categories: 

A. Traditional Security Measures 

Several security measures [33][34] have been proposed to 
prevent cyber-physical devices from the security threats 
discussed in Section II. For example, Physical Unclonable 
Functions (PUFs) [35][36][37][38] and True Random Number 
Generator (TRNGs) [39][40] based prevention and anti-
tampering techniques have been used for secure communication 
and interaction with the physical world. One of the key 
advantages of these techniques is that they can generate the 
necessary keys and authentication IDs, without requiring any 
on-device key storage mechanism, and can provide the 
obfuscation against tempering and reverse engineering. 
Moreover, these security measures center around random faults 
[41] during design or fabrication stages and not the ones that can 
be stealthy during the testing stage or even at the earlier stages 
of runtime operations. However, these techniques are based on 
design time solution and can only be applicable at testing stage 
(before deployment), therefore, these techniques have the 
following limitations: 

1) Unable to incorporate the effects of stealthy attacks during 
the testing stage or runtime.  

2) Unable to incorporate the effects of uncertainties during the 
real-world scenarios.   

B. Adaptive Security Measures 

In order to address the above-mentioned limitations of the 
traditional security measures, several runtime techniques have 
been proposed [42][43][44] which can adapt to incorporate 
uncertainties and stealthy attacks. Since the CPS security can be 
breached at any stage of its design cycle or workflow, i.e., 
designing, fabricating, testing or runtime, and sensing, 
computing, communicating or actuating [44]. Therefore, several 
sensors [44] and context-dependent [46][47] security measures 
have been proposed. Similarly, industrial CPS, such as smart 
grid and critical infrastructures’ security Is based on the idea of 
ensuring security from the control systems perspective [49][50].  



 
Fig. 4. A brief overview of our project Security for Smart CPS (Sec4SCPS). 

[50][7][51] and at a roundtable discussion [52]. It was suggested 
in [52] to work on a language, or a feature of it, to let the 
designers work on the security enhancement in synchronization 
with other requirements of CPS. Indeed, there has been little 
effort, notably from the control theory perspective [53], in 
considering security as a design parameter for CPS from an early 
design phase. Though these security measures provide the 
comprehensive runtime solutions for securing the CPS due to 
exponential growth in number cyber-physical devices, these 
traditional adaptive security measures are not sufficient to 
incorporate the runtime computational needs for security 
measures.  

C. Intelligent  Security Measures for CPS 

 To address the above-mentioned challenges of the adaptive 
security measures, several machine learning (ML) 
[54][55][56][57][58][59], specifically neural networks based 
approaches have been proposed because of the ability to extract 
the hidden features form the big amount of sensed/measured 
data [60]. Fig. 5. shows design flow of the ML-based security 
measures for CPSs which consists of the following steps:  

1) System Modeling: Due to heterogeneity in cyber-physical 
devices, it is nearly impossible to build each device in a 
secure environment which makes all the measurements from 
the devices unusable for training the machine learning 
algorithm. Therefore, the first step is model the device 
abstract behavior, depending upon its complexity, to 
generate the data for training the machine learning 
algorithms, as shown in Fig. 5. 

2) Security Analysis with respect to selected trained ML 
algorithm: in the next step, depending upon the security 
parameters, design constraints, i.e., power and area, and the 
complexity of the generated data, an appropriate machine 
learning algorithm is selected and then trained for the 
acquired data. Then this trained ML algorithm is used to 
analyze and detect the different security aspects and 
anomalous behavior in CPSs, i.e., power behavior analysis 
for computing cores.  

Though several works have been proposed based on the 

above-mentioned methodology most of them are focused on 

encryption block related challenges, i.e., information leakage. 

However, this methodology can be extended to analyze other 

side channel parameters [61][62][63] and communication 

patterns [64][65]. Therefore, we are currently working on the 

project (Smart security for CPS (Smart Sec4CPS)) which 

exploits of side channel parameters, i.e., power, and 

communication behavior to detect the security attacks during 

runtime, which is briefly explained in the next section.  

 
Fig. 5. Framework for Adaptive and Intelligent Security Measures. 

V. SEC4SCPS 

In this section, we provide an overview of our on-going 

project related to intelligent security measures for smart CPS 

(Sec4SCPS). In this project, we actively investigating different 

techniques for Hardware Security and Machine Learning 

Security to develop the secure CPS. Fig. 4 provides a brief 

overview of Smart Sec4CPS, which shows that based on 

research challenges this project has two major following 

research areas:  

A. Machine Learning for Security (ML4Sec) 

To address the issue of big data analysis for CPS security, 

in this project, we explore several parametric [61][62][63] and 

communication behaviors [64][65] (i.e., power and 

communication behavior) to improve the effectiveness of ML-

based security measures. In order to choose the suitable 

parameters, first, we analyze the power behavior of the 

MC8051 with and without available intrusion benchmark 

(trust-hub [66]), i.e., MC8051-T200, as shown in Fig. 6. It 

illustrates that the power distribution with respect to pipeline 

stages is dependent on the instructions. Moreover, it shows that 

an intrusion (MC8051-T200) has the significant impact on the 

power distribution, as depicted from the comparison between 

label 1 and 3, and label 2 and 4. In result, we conclude that the 

power behavior with respect to pipeline stages can be used to 

identify the abnormalities in computing core, e.g., MC8051. 

However, power behavior modeling and measurement during 

runtime is not easy and poses the following research challenges: 

1) How to model the power behavior in such a way that it can 
be used during runtime measurements?  

2) How to reduce the measurement (power-ports) and runtime 
modeling/ measurement area and energy overhead? 



 
Fig. 6. Effects of Intrusions on Power Correlation with respect to Pipeline 

Stages for Different Instructions, i.e., MOV, ADD, INC, JMP. 

 Similarly, we analyzed the MC8051-T200 effects on UART 

communication for MC8051. The analysis in Fig. 7 shows that 

sometimes the output packets of the communication channels 

are less (in case of denial of service attacks) than the input ones 

and vice versa (in case of flooding, jamming, and information 

leakage attacks). Therefore, sophisticated analysis of the 

communication behavior of CPS devices can be used to find the 

abnormalities during runtime. However, this poses following 

research challenges:   

1) How to model the communication behavior for runtime 
monitoring with minimum overhead? 

2) How to measure and analyze the communication during 
runtime with minimal area and energy overhead? 

 
Fig. 7. Effects of Intrusion on Communication Behavior. 

B. Security for Machine Learning (Sec4ML) 

ML algorithms possess the inherent security vulnerabilities 
which can be manipulated to perform the security attacks[67]. 
In the design process of ML-based security measures, first, an 
ML algorithm is trained and validated based on the training 
dataset, and then the trained ML algorithm is used for inference, 
as shown in Fig. 8 (see label A and B: which refer the training 
and inference data poisoning). As the process to develop the 
ML-based techniques is dependent on several data dependencies 
and complex computations, which makes it vulnerable to several 
security attacks during training and inferencing stages, i.e., data 
poisoning during training and inference stages, and ML 
architectural intrusions. These attacks can be catastrophic for the 
performance, accuracy, and reliability of the deployed ML 
algorithm. Typically, based on the attacker’s goal (payload of 
the security threats), the security attacks, for ML algorithms, can 
be divided into the following categories [68]:  

1) Confidence Reduction: In this attack, an attacker can 
introduce the ambiguity in classification to reduce the 
confidence level (defined as the entropy of the output class 
probabilities) of output classes. 

2) Random Misclassification: In this attack, an attacker can 
change the output classification to a random output class 
different from original class. 

3) Targeted Misclassification: In this attack, an attacker can 
produce the inputs or can intrude the ML architecture that 
can force the output classification to a specific target class 
different from original class. 

 
Fig. 8. Different Types of Security Attacks on Machine Learning Systems. 

 The strengths and weaknesses of the above-mentioned 
security attacks depend upon the attacker’s capabilities to get the 
access for hardware implementation, tools and dataset, which in 
combination with attack types can be referred as an attack 
surface. For example, the attack surfaces shown in Fig. 9, shows 
the strength and difficulty level of security attacks during the 
training and inference stages, respectively. Therefore, the 
following subsections briefly discuss security vulnerabilities of 
ML algorithm during its training and inference stages and some 
state-of-the-art attacks.  

 
Fig. 9. Attack Surface for Machine Learning Algorithms during Training 

and Inference Stages with respect to Attacker Capabilities to access the 

datasets, tools and DNN architecture (including all hyperparameters) and 

Payload (the outcome of an attack, i.e., targeted or non-targeted 

misclassification) of the Security Attacks. 

1) Security Vulnerabilities during Training Stage 

In the training stage, the model parameters are obtained from 
the available training dataset which is assumed to capture the 
input space of the overall system. However, for larger datasets, 
it is not always feasible to locally train the ML algorithms, 
especially neural network, because of limited computational 
resources and high non-recurring engineering (NRE) cost [69]. 
Therefore, either outsourced (third-party cloud services 
providers) training or transfer learning is used, which increases 
the possibility of security attacks. The security attacks during 



training are highly data dependent and their effectiveness is 
measured based on the attack payloads and attacker capabilities 
to get the illegal access to training datasets, tools, and the ML 
architectures. For instance, in the training part of the Fig. 9, the 
most powerful attack (the right top dot of the subgraph for 
training) is when the attacker has the access to all training steps, 
devices, and underlying algorithms, i.e., training tools, data and 
algorithm architecture. Thus, the attacker can train the model to 
alter the output classification of a specific input class to the 
target class (different from the original class).  

Most of the state-of-the-art security attacks, during the 

training stage, are focusing on training data poisoning to launch 

different payloads of security attacks, e.g., confidence reduction 

[70], random [71] and targeted[71] [72][73] misclassifications. 

Similarly, other architectural modification-based attacks can 

also perform the targeted misclassifications [74]. Although the 

architectural modification and training data poisoning attacks 

are very effective they can affect the inference accuracy. 

Therefore, there are many alternatives which can be explored to 

generate an effective attack without reducing the inference 

accuracy. For example, training data poisoning with respect to 

architecture knowledge or manipulation training tools, 

Therefore, in outsourced training, several prevention techniques 

have been proposed and one of the most commonly used is 

encrypting the training dataset before outsourcing [75]. 

2) Security Vulnerabilities during Inference Stage 

The inference stage in ML algorithms is also vulnerable and 
data dependent. However, the data poisoning attacks during the 
inference stage are not effective because a sophisticated 
preprocessing stage can significantly reduce intruded patterns in 
real-time data. Thus, inference data poisoning-based attacks are 
the weakest and easy to prevent at inference stages, as shown by 
the attack surface in Fig. 9 (see: inference subgraph). However, 
highly correlated patterns can be generated and intruded by 
combining the inference and inference data poisoning. 
Therefore, the possibility of such attacks, that are highly 
correlated and with high structural similarity index, cannot be 
ignored because preprocessing stage can overlook very high 
correlated intruded patterns. For example, Sharif et al. proposed 
an attack which introduces a glasses shape perturbation in 
training dataset and then it uses this pattern to launch a 
misclassification attack on neural network based face 
recognition system [72], as shown in Fig. 8 (see: label A).  
Alternatively, an attacker can exploit the data acquisition block 
[76], architecture or its hardware implementations [77]. 
Although preventions of such attacks are not easy because, in 
most of the cases, trained models run on third-party hardware 
which can have the multiple dormant or active intrusions [78].   

Therefore, based on the above discussion on security 
vulnerabilities in ML algorithms during its training and 
inference stages, we identify the following research challenges 
to ensure security and privacy in machine learning based 
security measures.  

1) How to ensure the confidentiality and privacy of the training 
datasets and its corresponding labels, especially for 
outsourced training and transfer learning? 

2) How to the ensure the secure and isolated data acquisition 
during the inference stage?  

3) How to identify and prevent the highly correlated data 
intrusion in dataset during the pre-processing phase.  

4) How to ensure the secure hardware implementation to 
prevent the dormant and active intrusions in third-party 
hardware accelerators for ML algorithm?   

VI. CONCLUSION 

This paper presents a brief analysis of the security threats at 
different CPS layers and their respective threat models and 
identified the associated research challenges to develop secure 
CPS. To address these challenges, this paper also a comparative 
analysis of the state-of-the-art static and adaptive techniques for 
detection and prevention, and their associated limitations. In the 
end, this paper discusses the ML-based security techniques 
against several characterized attacks on different layers of the 
CPS and identifies open research problems in developing the 
intelligent security measures for CPS. Furthermore, the paper 
provides an overview of our on-going project related to security 
for CPS and discusses the research problems with corresponding 
motivational analyses. 
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