

Lƻ¢п/t{ ς ¢ǊǳǎǘǿƻǊǘƘȅ Lƻ¢ ŦƻǊ /t{

FFG - ICT of the Future

Project No. 863129

5ŜƭƛǾŜǊŀōƭŜ 5оΦн

DǳƛŘŜƭƛƴŜǎΣ ǇǊƻŎŜǎǎŜǎ ŀƴŘ ǊŜŎƻƳƳŜƴŘŀǘƛƻƴǎ ŦƻǊ ǘƘŜ

ŘŜǎƛƎƴ ƻŦ ŘŜǇŜƴŘŀōƭŜ Lƻ¢ {ȅǎǘŜƳǎ

The IoT4CPS Consortium:

AIT ς Austrian Institute of Technology GmbH

AVL ς AVL List GmbH

DUK ς Donau-Universität Krems

IFAT ς Infineon Technologies Austria AG

JKU ς JK Universität Linz / Institute for Pervasive Computing

JR ς Joanneum Research Forschungsgesellschaft mbH

NOKIA ς Nokia Solutions and Networks Österreich GmbH

NXP ς NXP Semiconductors Austria GmbH

SBA ς SBA Research GmbH

SRFG ς Salzburg Research Forschungsgesellschaft

SCCH ς Software Competence Center Hagenberg GmbH

SAGÖ ς Siemens AG Österreich

TTTech ς Auto AG

TTTech ς TTTech Computertechnik AG

IAIK ς TU Graz / Institute for Applied Information Processing and Communications

ITI ς TU Graz / Institute for Technical Informatics

TUW ς TU Wien / Institute of Computer Engineering

XNET ς X-Net Services GmbH

© Copyright 2019, the Members of the IoT4CPS Consortium

For more information on this document or the IoT4CPS project, please contact:

Mario Drobics, AIT Austrian Institute of Technology, mario.drobics@ait.ac.at

mailto:mario.drobics@ait.ac.at

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 2 / 41

Document Control

Title: Design & Methods Concept

Type: Public

Editor(s): Stefan Jaksic

E-mail: Stefan.Jaksic@ait.ac.at

Author(s): Abdelkader Shabaan (AIT), Siddhartha Verma (AIT), Wolfgang Herzner (AIT), Stefan Jaksic

(AIT), Martin Matschnig (Siemens), Lukas Krammer (Siemens)

Doc ID: D3.2

Amendment History

Version Date Author Description/Comments

V0.1 20.09.2019 S. Jaksic Initial version prepared

V0.2 26.09.2019 S. Jaksic SHSA

V0.3 07.10.2019 A. Shabaan ThreatGet example introduced

V0.4 15.10.2019 S.Verma, A.Shabaan Security tools

V0.5 25.10.2019 S. Jaksic Corrections

V0.6 07.11.2019 S. Jaksic, W. Herzner Appendix

V0.7 12.11.2019 S.Chlup, W. Herzner GSFlow, Appendix, Executive summary

V0.8 15.11.2019 S.Chlup Corrections and references

V1.0 19.11.2019 L.Krammer Recommender System

V1.1. 25.11.2019 S. Jaksic Post-review updates

Legal Notices

The information in this document is subject to change without notice.

The Members of the IoT4CPS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The

Members of the IoT4CPS Consortium shall not be held liable for errors contained herein or direct, indirect,

special, incidental or consequential damages in connection with the furnishing, performance, or use of this

material.

The IoT4CPS project is partially funded by the "ICT of the Future" Program of the FFG and the BMVIT.

mailto:Stefan.Jaksic@ait.ac.at

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 3 / 41

Content

Abbreviations .. 4

Executive Summary ... 5

1. Introduction .. 6

2. Overview and System Model .. 8

3. Application Layer Tools and Methods ... 9

3.1 GSFlow ... 9

3.1.1 GSFlow Structure and Definitions ... 9

3.2 Failure Mode, Vulnerabilities and Effects Analysis .. 11

3.3 Threat Modelling ... 16

3.3.1 Risk Treatment for the Identified Extreme Threats .. 19

3.3.2 Risk Treatment for Threat 1 and Threat 2 ... 19

3.3.3 Risk Treatment for Threat 3 and Threat 4 ... 20

3.3.4 Risk Treatment for other Threats .. 21

3.4 MORETO .. 23

3.5 Safety and Security co-engineering ... 24

3.5.1 Security Risk Assessment with Attack Trees ... 24

3.5.2 An example of Security Risk Assessment with Attack Trees ... 25

3.5.3 Safety Risk Assessment ... 27

4. Platform Layer Tools and Methods ... 29

4.1 Self-Healing by Structural Adaptation ... 29

4.2 Architectural Requirements of SHSA ... 30

5. Network Layer Tools and Methods ... 31

5.1 Recommender System for Dependable IoT applications .. 31

5.1.1 Aim of the Recommender System ... 32

5.1.2 Knowledge Base .. 33

5.1.3 User Interface .. 34

5.1.4 Examples ... 34

5.1.4.1 Identification of suitable communication protocols ... 34

5.1.4.2 Identification of suitable communication protocols including dependability aspects 35

6. Conclusion ... 37

7. Appendix: V&V pattern ς Security Risk Assessment with Attack Trees .. 38

8. References... 40

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 4 / 41

Abbreviations

API Application Programming Interface

AT Attack Tree

ATA Attack Tree Analysis

BAS Basic attack steps

CR Component Requirement

CPS Cyber-Physical System

CPU Central Processing Unit

DFD Data Flow Diagram

DI Data Input

DO Data Output

DoS Denial of Service

DNF Disjunctive Normal Form

EA Enterprise Architect

EDR Embedded Device Requirements

FMEA Failure Mode and Effects Analysis

FMVEA Failure Mode, Vulnerabilities and Effects Analysis

FPGA Field Programmable Gate Array

FTA Fault Tree Analysis

HAS Higher attack states

I4.0 Industry 4.0

IoT Internet of Things

IIoT Industrial IoT

KP Knowledge Pack

MORETO Model-based Security Requirement Management Tool

NDR Network Device Requirements

OSF Open Semantic Framework

QoS Quality of Service

ROTS Real-Time Operating System

SA Security Achieved

SCPN Stochastic Colored Petri Net

ST Security Target

SHSA Self-Healing through Structural Adaptation

SysML System Modelling Language

TARA Threat Analysis and Risk Assessment

TOE Target of Evaluation

TS Target System

UC Use Case

UML Unified Modelling Language

VBA Visual Basic

V&V Verification and Validation

WCET Worst Case Execution Time

WP Work Package

XML eXtensible Markup Language

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 5 / 41

Executive Summary

In this deliverable we provide guidelines, processes and recommendations to build dependable IoT systems. D3.2

methods and tools tackle challenges along different CPS architecture layers: information layer, control layer and

network layer. In this deliverable we also position WP3 contributions w.r.t. IoT4CPS use cases: Automated Driving

and Industry4.0.

The physical-level tools and methods such as sensor security measures for discovering faulty and hacked sensors

as well as will be reported in deliverables D3.4Υ ά{ȅǎǘŜƳ ŀǊŎƘƛǘŜŎǘǳǊŜ ǇŀǘǘŜǊƴǎ ŦƻǊ ŜƴŀōƭƛƴƎ Ƴǳƭǘƛ-stakeholder

ǘǊǳǎǘ ǇǊƻǾƛǎƛƻƴƛƴƎ ŘǳǊƛƴƎ ǇǊƻŘǳŎǘƛƻƴ ŀƴŘ ƳŀƛƴǘŜƴŀƴŎŜέ. In addition, we report on forward-secure key exchange

mechanism in our deliverable D3.6.1: άPrototype cryptographic liōǊŀǊȅ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴέΦ On a network level we

report on recommender systems to develop dependable IoT system, which can help users who want to build

large IoT systems to choose the appropriate protocols and system configurations. Another method to achieve

dependability, applied on a platform-level, is the Self-Healing by Structural Adaptation which allows systems to

leverage implicit redundancy to achieve resiliency to failures. Solutions for trusted localization and orientation

can be found in D3.4.

On an application level we report on tools for a variety of tasks in cyber security. We present ThreatGet, a tool

that identifies, detects, and understands potential security threats in the foundation level of system models.

Moreto is a tool for security requirements analysis and management using modelling languages such as

SysML/UML. Our next contribution is a tool for standard-based product development management: GSFlow. It

is one of the results of a more general effort to develop tools to support model-based development approaches

and Safety & Security by Design. Last but not the least, we report on methods for safety and security risk

assessment and formalize it into a verification pattern.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 6 / 41

1. Introduction

Deliverable D3.2: Guidelines, processes and recommendations for the design of dependable IoT Systems is the

second deliverable related to task T3.1: Dependability design methods for IoT and is strongly related to the

deliverable D3.1: Design and Methods Concept. In D3.2 we further elaborate methods from D3.1 and explain

how user can leverage those methods to obtain dependable systems. We also upgrade the deliverable with new

methods and tools such as ThreatGet, Safety and Security co-engineering methodology and Verification and

Validation (V&V) patterns.

For the sake of completeness, it is important at this point to provide the reference to the structure work w.r.t.

architectural layers. Similarly to D3.1, in this deliverable we also collect and present potential solutions, tools and

methodological building blocks for the development of safe and secure Internet of Things (IoT) and Cyber-

Physical Systems (CPS). This deliverable puts a special focus on the integration of privacy and on the support of

the complete engineering cycle, from engineering support to providing potential solutions.

Figure 1: Structuring WP3 contributions along the V-Model

The contributions are structured based around the left side of the V-Model. The usage of the V-Model is here

mainly as a structuring model and for easier classification and explanation. The usage of the V-Model should not

be understood as an enforcement of this process model and the presented methods and building blocks are not

restricted in term of engineering process model.

Our understanding of dependability itself is based on [39]. In this work, the dependability is differentiated

between attributes, threats and means. The attributes summarize all parts of dependability, e.g. the set of

properties we would like to ensure that a system we need to rely on possess. Due to the need of our industrial

partners as well as the nature of our two main use cases, the IoT4CPS project sets priority on safety and security.

Threats are potential factors which can cause a violation or contribute to a violation of a dependability attribute.

In order to protect the attributes, we can use different means. The following section will give a short overview

about the basic system concept considered in IoT4CPS and present then different means to achieve

dependability, which are considered in WP3 of IoT4CPS project.

Our tools, methods and guidelines are mostly non directly bound to a specific use case and can be applied to

either of our IoT4CPS main use cases: Industry 4.0 as well as Autonomous Driving. Two of them which are tightly

Functional
Concept

Technical
Concept

HW / SW
Design

HW / SW Implementation

Functional
level

System level

HW / SW Level

Reusable resilient system
architecture pattern and

concepts

Scalable and efficient
crypto algorithm for IoT

HW - based solutions for
safe & secure IoT

Dependability (Safety ,
Security , Reliability , Efficiency)

design methods for IoT

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 7 / 41

coupled to the use case are the Autonomous Driving Platform developed by TTTech, as well as the Recommender

System for IoT, developed by Siemens, for our Industry 4.0 use-case. The overview can be seen in Figure 2.

Figure 2: Most contributions of WP3 fits into both of IoT4CPS use-cases

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 8 / 41

2. Overview and System Model

In Figure 3 we can see how different WP3 contributions are positioned in the CPS Layer stack. A typical CPS is a

complex system of systems which interact with one another. Depending on their purpose the components are

usually classified into one of four layers: information layer, control layer, network layer and physical layer. The

physical level is the lowest level in hierarchy. This is where data is obtained from sensors and data is prepared to

be sent to other systems (i.e. encrypted). Once the system obtained the data, it is accessed and transmitted to

interested components on network nodes. Typically, this takes place on network layer. On top of network layer,

we see the platform layer. It is a layer where most system core functions are implemented, which are to be used

by application layer.

Figure 3: Contributions to safety and security can be separated into different CPS layers.

IoT4CPS project achievements can be found in any of the CPS architecture layers. On application layer, we have

our V&V patterns and cyber security tools such as GSFlow, Moreto and ThreatGet. In addition, the guidelines for

developing usable cryptographic APIs by SBA research belongs to the CPS application layer. Finally, we report on

hybrid methods for safety and security risk assessment.

Underneath the application layer, in the platform layer we find Self-Healing for Structural Adaptation (SHSA) a

technique for building resilient CPS which is developed by TU Wien. Solutions for trusted localization and

orientation in space, useful in our Industry 4.0 use case are developed by TU Graz together with JKU Linz. Finally,

we have an autonomous driving platform which is developed by TTTech. To build a reliable and functional IoT

ecosystem one can use a recommender system, developed by Siemens. Last but not the least, AIT and TUG

developed low-overhead encryption scheme, which is also implemented in FPGA by Siemens. DUK will provide

concepts for achieving sensor security and low-level data integrity.

IoT4CPS tools should support dependability in several levels of CPS hierarchy. Our encryption solutions would

enable efficient and secure communication channel between devices with limited resources, which is the case in

a typical IoT scenario. In extreme cases of devices uncapable of encryption, we can at least guarantee data

authenticity by applying digital watermarking techniques. IoT recommender system further enhances

dependability by guiding the user to select the appropriate protocols, thus making the entire system more

reliable. On a platform level, we increase the trust in system by leveraging methods for trusted orientation and

localization. A system which adopts our SHSA techniques gains the ability to manage unpredictable component

failures, thus becoming more dependable. Finally, our design-time security and safety tools, V&V patterns and

Cryptographic API development guidelines aim to increase dependability early on.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 9 / 41

3. Application Layer Tools and Methods

In this section we focus on IoT4CPS WP3 contributions for improving dependability on the application level. We

report on our design time security analysis tools for model-based devilment, for security requirement

management and threat modelling as well as safety and security risk assessment.

3.1 GSFlow

Our first contribution is a tool for standard-based product development management: GSFlow. It is one of the

results of a more general effort to develop tools to support model-based development approaches and safety &

security by design.

The goal of GSFlow is to support the complete engineering lifecycle of safety and/or security relevant systems

based on pre-defined processes, by guiding the user through the development process. Its main objective is to

make standard driven development straightforward, especially for companies that are unacquainted with

functional safety and security standards. The model implemented in GSFlow simplifies standard driven

development by guiding the end-users through the development process and consequently offloads the effort

from security experts, while still providing assurance. This is especially relevant to SMEs which only have a limited

number of safety or security experts.

The central output of GSFlow is a safety and/or security case which shall support companies two ways: (1) helping

to reach assurance for their products and (2) allowing to summarize the argumentation why a system is

acceptably safe and secure. To achieve this goal every project in GSFlow contains requirements which correspond

to functional safety and security standards such as [37]. GSFlow provides standard conformant user management

and utilizes tools to ensure the quality of an evidence.

GSFlow provides a flexible framework for modelling and executing standards. It is also capable of executing

plugins written by an external developer. This flexibility ensures that the specific needs of a company can be met.

Furthermore, an external developer is only required to implement an interface according to their needs. For

example, GSFlow can execute external plugins to generate reports, as well as to check the artefacts and

requirements using Natural Language Processing methods.

3.1.1 GSFlow Structure and Definitions

In this section we provide more details about the operation of GSFlow. Requirements are defined as the entities

needed to achieve the objective of the project. Two different kinds of requirements can be distinguished. The

first kind of requirements are the standard requirements, which are derived from functional safety and security

standards. They are needed to identify the goals that are obligatory to reach compliance to relevant standards.

Secondly, the product requirements in GSFlow represent the requirements that are specific to a product. They

can be linked to a standard requirement. Furthermore, the requirements in GSFlow are the key elements for

documenting the workflow as they serve as an anchor to attach evidence and trace every action that is conducted

on them while being processed. Once processing is completed and all evidence has been created, a requirement

may enter the state of completion.

Phases in GSFlow represent phases of a safety/security standard. GSFlow ensures that in every phase Standard

Requirements that are specific to this phase need to be fulfilled. A phase can only start once all previous phases

have been completed. Phases in GSFlow are used to structure requirements and define the order of execution

in the workflow.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 10 / 41

Figure 4: Illustration of workflow and fulfilment status

GSFlow allow for integration with external tools. By implementing and using the interfaces provided by GSFlow,

an external Developer can create plugins and an admin can upload them to GSFlow after conducting validation.

These tools/plugins are then ready to be executed. The dataflow between GSFlow and the tool/plugin is

conducted only through the API. The utilization of tools shall serve as quality assurance as well as provide

convenience to the users working with GSFlow.

GSFlow supports standard conformant user management. Different roles can be assigned to different users per

project. Roles are based on a generic model of roles defined in different standards. In GSFlow, roles can be

mapped to specific standards. The list of the supported roles includes:

¶ Project Manager

¶ Requirements Manager

¶ Developer

¶ Verifier

¶ Validator

¶ Assessor

Figure 5: Basic responsibility chain in GSFlow

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 11 / 41

In GSFlow responsibilites are modelled on a per requirement basis. Each requirement has the required roles

assigned to support the development chain defined in a standard. To be more precise, when the developer has

finished their task, the verifier is assigned followed by the validator. Only when all the the responsible parties

have marked their tasks as finished, assessment can take place.

As discussed, GSFlow enables the end user to organize their workflow according to phases, work products and

requirements deducted from standards. GSFlow also serves as a documentation platform and tracks every action

that is conducted regarding a certain requirement and links evidences to those requirements. This way, GSFlow

supports traceability. The flexible framework inside GSFlow enables tailoring of generic processes to company or

project specific demands. When appropriately modelled, it can support a safety and security co-engineering

workflow. To achieve this, different adequate standards need to be analysed and consequently modelled into

one combined workflow.

For example, the standards ISO/IEC 27002[35] and EN 50128 [34] contain requirements and methods

emphasizing on availability, reliability, confidentiality, integrity and maintainability. These standards describe

measures that need to be undertaken in order to assure the aforementioned attributes. SAE Standard J3061 [37],

which is a Cybersecurity Guidebook for Cyber-Physical Vehicle Systems, describes security and its effects on

safety on financial and operational basis and hence, availability and reliability. Security and measures to ensure

integrity and confidentiality can be found in the IEC 62443 series [38]. By following the generated workflow,

GSFlow makes the development of dependable IoT systems feasible.

3.2 Failure Mode, Vulnerabilities and Effects Analysis

Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) is a static method for security analysis. FMVEA is

based on the Failure Mode and Effect Analysis (FMEA) and extends the standard approach with security related

threat modes [23]. A failure mode describes the way the function of an element fails. A threat mode describes

the way in which the identified function of an element can be misused. Threat modes classifies threats in six

categories (Spoofing of user identity, Tampering, Repudiation, Information disclosure, Denial of service, Elevation

of privilege).

FMVEA consists of several phases, beginning with system modelling phase. Once this phase is complete the

failure and threat modes for each element of the system model are identified. Depending on the domain, the

system architecture and the knowledge about the system, failure and threat modes can be refined and extended.

Each identified failure or threat mode associated with the element is investigated for potential effects. For modes

with critical effects, potential causes are analysed and the likelihood for each cause is estimated. For threat

modes, likelihood is determined using a combination of threat and system properties.

Threat properties mainly describe the resource and motivation of a potential threat agent while system

properties include reachability and system architecture. The system model is based on a three-level data flow

diagram (DFD). Effects of failure and threat modes are presented at the context level of the diagram, which shows

the interaction between the system and its environment. Failure and threat modes are located at the level 1

DFD. Vulnerabilities and failure causes are based on the level 2 DFDs.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 12 / 41

Figure 6: An example model as an input for analysis with FMVEA

Figure 6 shows the diagram of an example use-case in which a set of actors is controlled by an CPU, based on

some sensor input. Control Strategy can be defined and monitored in some higher layers. The example model

will be used to perform an analysis with FMVEA. The blue squares represent the root environments of a specific

level. Each orange node can be seen as an operating element inside the environment. Green squares represent

sub-environments inside the root-environments which encapsulate their own operating elements. Black squares

display the defined attǊƛōǳǘŜǎκǇǊƻǇŜǊǘƛŜǎ ŦƻǊ ǘƘŜ ŘƛŀƎǊŀƳ ŜƭŜƳŜƴǘǎΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ά/t¦έ Ƙŀǎ ǘƘŜ

ŀǘǘǊƛōǳǘŜκǇǊƻǇŜǊǘȅ ά²/9¢έ όά²ƻǊǎǘ 9ȄŜŎǳǘƛƻƴ ¢ƛƳŜέύ ǿƛǘƘ ŀ ǾŀƭǳŜ ƻŦ άол ƳǎέΦ

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 13 / 41

Figure 7: The diagram modelled in FMVEA and the rules

Figure 7 shows the diagram from Figure 6 modelled in FMVEA. On the left-hand side, we can see the diagram

ǊŜƭŀǘŜŘ ŀŎǘƛƻƴǎ ƭƛƪŜ ά/ǊŜŀǘŜ 9ƴǾƛǊƻƴƳŜƴǘέΣ ά/ǊŜŀǘŜ bƻŘŜέ ŀƴŘ ά/ǊŜŀǘŜ bƻŘŜέΦ !ƴ 9ƴǾƛǊƻƴƳŜƴǘ Ŏŀƴ ōŜ ŎƻƴǎƛŘŜǊed

as a container, which provides general attributes to his children. Attributes can be focused on Security and Safety.

The attributes of an element are directly displayed below the diagram. Figure 7 also displays the rules which

should be used to analyse the use-case diagram. From the left to the right are the names of the rule then a short

ŘŜǎŎǊƛǇǘƛƻƴ ŀƴŘ ǘƘŜ άwǳƭŜέΦ ¢ƘŜ άwǳƭŜέ-column is the most important one, because here the actual rule for the

analyser is defined. The content of a rule is defined by the grammar shown in Figure 8.

Figure 8: Example of the FMVEA grammar

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 14 / 41

Figure 9 displays the results of the use-case analysis. The previously created rules are applied on the selected

diagram.

Figure 9: Analysis results for the defined rules and the diagram

From left to right you one can observe the applied rule and the results of the specific rule on the diagram. The

affected elements and connections can be vieweŘ ƛƴ ǘƘŜ ŘƛŀƎǊŀƳ ƛŦ ǘƘŜ ǳǎŜǊ ŎƭƛŎƪǎ ƻƴ ǘƘŜ ά{Ƙƻǿέ-button to the

right. Inside the diagram the affected elements and connections get highlighted by a red border as you can see

in the Figures 11-13.

Figure 10: 1st rule results

In Figure 10 you can see the affected elements of the first rule. The Definition of the first rule says that if there

ƛǎ ŀƴȅ ŜƴǾƛǊƻƴƳŜƴǘ ǿƛǘƘ ǘƘŜ ǇǊƻǇŜǊǘȅ ά!//9{{ /ƻƴǘǊƻƭҐŦŀƭǎŜέ ǿƘƛŎƘ Ŏƻƴǘŀƛƴǎ ŀ ŎƘƛƭŘ ƻōƧŜŎǘ ǿƛǘƘ ǘƘŜ ǇǊƻǇŜǊǘȅ

άIaL !//9{{ ǿƛǘƘ ǇŀǎǎǿƻǊŘҐŦŀƭǎŜέ ǘƘŜƴ ǘƘŜǊe is a security problem. As one can observe from Figure 6 we initially

ŘŜŦƛƴŜŘ ǘƘŜ ά/ƻƴǘǊƻƭ {ǘŀǘƛƻƴέ ǿƛǘƘ ά!//9{{ /ƻƴǘǊƻƭҐǘǊǳŜέ ǎƻ ǘƘŜǊŜ ƛǎ ƴƻ ǇǊƻōƭŜƳ ŜǾŜƴ ƛŦ ǘƘŜ ά/ƻƴǘǊƻƭ {ǘŀǘƛƻƴέ

Ƙŀǎ ǘƘŜ ǇǊƻǇŜǊǘȅ άIaL !//9{{ ǿƛǘƘ ǇŀǎǎǿƻǊŘҐŦŀƭǎŜέΦ IƻǿŜǾŜǊΣ ƛŦ ƻne observes ǘƘŜ ά{ǘŀǘƛƻƴ мέ ŀƴŘ ǘƘŜ

ά9ƴƎƛƴŜŜǊƛƴƎ {ǘŀǘƛƻƴέ ǘƘŜƴ ōƻǘƘ ŎǊƛǘŜǊƛŀ ŀǊŜ ŦǳƭŦƛƭƭŜŘΣ ŀƴŘ ǘƘƛǎ ƛǎ ǘƘŜ ǊŜŀǎƻƴ ǿƘȅ ǘƘŜǎŜ ǘǿƻ ƻōƧŜŎǘǎ ŀǊŜ ǘƘŜ ŀŦŦŜŎǘŜŘ

objects of the first rule.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 15 / 41

Figure 11: 2nd rule results

In Figure 11 you can see the affected connections of the second rule. The Definition of the second rule says that

if there is any connection between two objects which do not share the same root object then the connection

must be encrypted. One can observe from Figure 6 we never defined an encryption property for any connection

ƛƴǎƛŘŜ ǘƘŜ ŘƛŀƎǊŀƳΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘŀƪŜ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴ ōŜǘǿŜŜƴ ǘƘŜ ά/ƻƴǘǊƻƭ {ǘŀǘƛƻƴέ ŀƴŘ ά/нέΦ ¢ƘŜ Ǌƻƻǘ ƻōƧŜŎǘ

ƻŦ ǘƘŜ ά/ƻƴǘǊƻƭ {ǘŀǘƛƻƴέ ƛǎ ǘƘŜ ά/ƻƴǘǊƻƭ /ŜƴǘŜǊέ ŀƴŘ ǘƘŜ Ǌƻƻǘ ƻōƧŜŎǘ ƻŦ ǘƘŜ ά/нέ ƛǎ ǘƘŜ ά{ǘŀǘƛƻƴ [ŜǾŜƭέ ōǳǘ ǘƘŜȅ

ǎƘŀǊŜ ŀ ŎƻƴƴŜŎǘƛƻƴΦ bƻǿ ƭŜǘΩǎ ŎƻƴǎƛŘŜǊ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴ ōŜǘǿŜŜƴ ǘƘŜ ά/нέ ŀƴŘ ά/мέΦ ¢ƘŜ Ǌƻƻǘ ƻōƧŜŎǘ ƻŦ ōƻǘƘ

ƻōƧŜŎǘǎ ƛǎ ǘƘŜ ά{ǘŀǘƛƻƴ [ŜǾŜƭέΦ ¢ƘŜȅ ǎƘŀǊŜ ǘƘŜ ǎŀƳŜ Ǌƻƻǘ ŜƭŜƳŜƴǘ ŀǎ ǘƘŜ ǎŀƳŜ ǇŀǊŜƴǘ ŜƭŜƳŜƴǘΣ ǘƘŜǊŜŦƻǊŜ ǘƘƛǎ

connection does not represent a potential problem.

Figure 12: 3rd rule results

In Figure 12 you can see the affected elements and connections of the third rule. As you can take from Figure 6

ǿŜ ǎŜǘ ǘƘŜ ²/9¢ ƻŦ ǘƘŜ /t¦ ŀǎ άол ƳǎέΦ ¢ƘŜ 5ŜŦƛƴƛǘƛƻn of the third rule says that if the WCET inside the CPU is

ƘƛƎƘŜǊ ǘƘŀƴ άнл Ƴǎέ ǘƘŜ ŀŎǘǳŀǘƻǊ Ƴŀȅ ƴƻǘ ǊŜŀŎǘ ƛƴ ǘƛƳŜ ǘƻ ǘƘŜ ǎŜƴǎƻǊ ŘŀǘŀΦ ¢ƘŜ ǎŜƴǎƻǊ Řŀǘŀ ƛǎ ŎƻƳƛƴƎ ŦǊƻƳ ǘƘŜ

ά5ŀǘŀ LƴǇǳǘέ ό5Lύ ǘƘŜƴ ǘƘŜ Řŀǘŀ ƛǎ ǇǊƻŎŜǎǎŜŘ ƛƴǎƛŘŜ ǘƘŜ /t¦ ǿƛǘƘ ŀ ²/9¢ ƻŦ олƳǎ ŀƴŘ ǘƘen senǘ ǘƻ ǘƘŜ ά!ŎǘǳŀǘƻǊέ

ƻǾŜǊ ǘƘŜ ά5ŀǘŀ hǳǘǇǳǘέ ό5hύΦ ¢Ƙƛǎ ƛǎ ǘƘŜ ǊŜŀǎƻƴ ǿƘȅ ǘƘŜ ά5LέΣ ά/t¦έΣ ά5hέ ŀƴŘ ǘƘŜ ά!ŎǘǳŀǘƻǊέ ŀǊŜ ŀŦŦŜŎǘŜŘ

elements in this case. The connections between these objects transport the data and are affected connections

in this case. This rule could be expanded by additionally taking into account the latency of the connections.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 16 / 41

3.3 Threat Modelling

A secure system can be designed and developed only if security issues are well-identified and addressed

appropriately in the early stages of the system development. That is considered a significant advantage because

once the system is developed, it becomes harder to add security countermeasures. ThreatGet is a toolbox for

Enterprise Architect, which is a widely used tool for Model-Based Systems Engineering. ThreatGet identifies,

detects, and understands potential threats in the foundation level of system models. It supports the initial steps

of the developing system process to guarantee the security by design. The following figure depicts an example

design which a user can specify in ThreatGet, in order to perform security threat analysis.

Figure 13: IoT-based Smart Factory

Our Figure 13: IoT-based Smart Factory illustrates an example of IoT application in a smart factory, which is one

of two main use cases of IoT4CPS project. The example contains one or more sensors and camera units for

collecting and gathering information about the production line. The collected data is processed by a control unit,

that handle and manage actions by sending signals to actuator units such as robotic arm and engine as defined

in the figure. The data is sent to a centralized data storage and processing unit for monitoring the quality of the

production.

Sensor1 Actuator1

Actuator2

Sensor2

Gateway

Data Processing and Storage

Control Unit

Insecure
Communication Insecure

Communication

Secure
Communication

Action

Action

Secure
Communication

Sensor Data

Sensor Data

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 17 / 41

In such a heterogeneous and distributed system, potential security threats can exist in any component, which

may compromise the operation of the entire system. In order to identify potential threats in our system, we

apply ThreatGet. The threats are defined according to the dataflow from the source components to the targets.

According to the security properties of these units, some vulnerabilities could be exploited be threats.

In Figure 13 the Control Unit takes the central role in the Smart Factory model. This component communicates

with the data storage through a gateway, which runs a certain communication protocol. Depending on the

gateway device, it can provide low or high security features. In our model, we can analyze devices with different

levels of security by adjusting the possible security parameters of the model. We model possible security

mitigation measures in the communication flow between the Control Unit and the Gateway. The features

include: Source and Destination Authentication, Confidentiality and Integrity. We can set these parameters to

values which correspond to a real device.

In Figure 14 we can observe that if the HTTP protocol has mitigation measures switched off, the communication

channel introduces 6 different threats. Once we introduce the mitigation measures in the communication

channel the number of threats reduces to 4.

Figure 14: The impact of introducing a mitigation measure

As a result of the analysis, ThreatGet detects 32 potential threats, that are classified according to the STRIDE

model (i.e., Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service (DoS), and Elevation of

Privilege). Spoofing represents an attempt by a person or program to identify itself as another by falsifying data,

to gain an illegitimate advantage. Data tampering is an attempt to maliciously modify the data through

unauthorized channels. Repudiation is a kind of attack which manipulates the log data in the computer systems,

in order to conceal traces in the log. Denial of Service and Elevation of privilege are well-studied threats, where

an attacker is jamming the access to the system resource, and when an attacker attempts to gain more access

rights than allowed, respectively. The number of the detected threats according to the STRIDE model is depicted

in Figure 15.

IoT4CPS ς 863129 D3.2

 PUBLIC

Version V1.1 Page 18 / 41

Figure 15: Distribution of identified threats according to the STRIDE model and all potential threats listed

Afterwards, the risk assessment process is applied to evaluate risk severities of the detected threats according

ǘƻ ǘƘŜ ǾŀƭǳŜǎ ƻŦ ǘƘŜ ƛƳǇŀŎǘ ŀƴŘ ƭƛƪŜƭƛƘƻƻŘ ǇŀǊŀƳŜǘŜǊǎΦ ¢ƘŜ ¢ƘǊŜŀǘDŜǘΩǎ ǳǎŜǊ Ŏŀƴ ǎŜƭŜŎǘ ǘƘŜ ǇŀǊŀƳŜǘŜǊǎ ƻŦ ǘƘŜ

impact and likelihood to estimate the risk severity, as shown in Figure 15. There are five parameter values of the

Impact and Likelihood are used in the estimation process to determine the risk severity level of threats. Figure

16 illustrates the levels of the impact and likelihood that are used by ThreatGet for the risk assessment process.

Figure 16: Risk assessment chart

0
2
4
6
8

10
12
14

Spoofing Tampering Repudiation Information
Disclosure

Denial of
Service

Elevation of
Privilege

