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Executive Summary 

In this deliverable we provide guidelines, processes and recommendations to build dependable IoT systems. D3.2 

methods and tools tackle challenges along different CPS architecture layers: information layer, control layer and 

network layer. In this deliverable we also position WP3 contributions w.r.t. IoT4CPS use cases: Automated Driving 

and Industry4.0. 

The physical-level tools and methods such as sensor security measures for discovering faulty and hacked sensors 

as well as will be reported in deliverables D3.4: “System architecture patterns for enabling multi-stakeholder 

trust provisioning during production and maintenance”. In addition, we report on forward-secure key exchange 

mechanism in our deliverable D3.6.1: “Prototype cryptographic library implementation”. On a network level we 

report on recommender systems to develop dependable IoT system, which can help users who want to build 

large IoT systems to choose the appropriate protocols and system configurations. Another method to achieve 

dependability, applied on a platform-level, is the Self-Healing by Structural Adaptation which allows systems to 

leverage implicit redundancy to achieve resiliency to failures. Solutions for trusted localization and orientation 

can be found in D3.4.  

On an application level we report on tools for a variety of tasks in cyber security. We present ThreatGet, a tool 

that identifies, detects, and understands potential security threats in the foundation level of system models. 

Moreto is a tool for security requirements analysis and management using modelling languages such as 

SysML/UML. Our next contribution is a tool for standard-based product development management: GSFlow. It 

is one of the results of a more general effort to develop tools to support model-based development approaches 

and Safety & Security by Design. Last but not the least, we report on methods for safety and security risk 

assessment and formalize it into a verification pattern. 
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1. Introduction 

Deliverable D3.2: Guidelines, processes and recommendations for the design of dependable IoT Systems is the 

second deliverable related to task T3.1: Dependability design methods for IoT and is strongly related to the 

deliverable D3.1: Design and Methods Concept. In D3.2 we further elaborate methods from D3.1 and explain 

how user can leverage those methods to obtain dependable systems. We also upgrade the deliverable with new 

methods and tools such as ThreatGet, Safety and Security co-engineering methodology and Verification and 

Validation (V&V) patterns. 

For the sake of completeness, it is important at this point to provide the reference to the structure work w.r.t. 

architectural layers. Similarly to D3.1, in this deliverable we also collect and present potential solutions, tools and 

methodological building blocks for the development of safe and secure Internet of Things (IoT) and Cyber-

Physical Systems (CPS). This deliverable puts a special focus on the integration of privacy and on the support of 

the complete engineering cycle, from engineering support to providing potential solutions. 

Figure 1: Structuring WP3 contributions along the V-Model 

The contributions are structured based around the left side of the V-Model. The usage of the V-Model is here 

mainly as a structuring model and for easier classification and explanation. The usage of the V-Model should not 

be understood as an enforcement of this process model and the presented methods and building blocks are not 

restricted in term of engineering process model. 

Our understanding of dependability itself is based on [39]. In this work, the dependability is differentiated 

between attributes, threats and means. The attributes summarize all parts of dependability, e.g. the set of 

properties we would like to ensure that a system we need to rely on possess. Due to the need of our industrial 

partners as well as the nature of our two main use cases, the IoT4CPS project sets priority on safety and security. 

Threats are potential factors which can cause a violation or contribute to a violation of a dependability attribute. 

In order to protect the attributes, we can use different means. The following section will give a short overview 

about the basic system concept considered in IoT4CPS and present then different means to achieve 

dependability, which are considered in WP3 of IoT4CPS project. 

Our tools, methods and guidelines are mostly non directly bound to a specific use case and can be applied to 

either of our IoT4CPS main use cases: Industry 4.0 as well as Autonomous Driving. Two of them which are tightly 

Functional 
Concept 

Technical 
Concept 

HW / SW 
Design 

HW / SW Implementation 

Functional  
level 

System level 

HW / SW Level 

Reusable resilient system  
architecture pattern and  

concepts 
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safe & secure IoT 
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coupled to the use case are the Autonomous Driving Platform developed by TTTech, as well as the Recommender 

System for IoT, developed by Siemens, for our Industry 4.0 use-case. The overview can be seen in Figure 2.  

 

Figure 2: Most contributions of WP3 fits into both of IoT4CPS use-cases  
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2. Overview and System Model 

In Figure 3 we can see how different WP3 contributions are positioned in the CPS Layer stack. A typical CPS is a 

complex system of systems which interact with one another. Depending on their purpose the components are 

usually classified into one of four layers: information layer, control layer, network layer and physical layer. The 

physical level is the lowest level in hierarchy. This is where data is obtained from sensors and data is prepared to 

be sent to other systems (i.e. encrypted). Once the system obtained the data, it is accessed and transmitted to 

interested components on network nodes. Typically, this takes place on network layer. On top of network layer, 

we see the platform layer. It is a layer where most system core functions are implemented, which are to be used 

by application layer. 

 

Figure 3: Contributions to safety and security can be separated into different CPS layers. 

IoT4CPS project achievements can be found in any of the CPS architecture layers. On application layer, we have 

our V&V patterns and cyber security tools such as GSFlow, Moreto and ThreatGet. In addition, the guidelines for 

developing usable cryptographic APIs by SBA research belongs to the CPS application layer. Finally, we report on 

hybrid methods for safety and security risk assessment. 

Underneath the application layer, in the platform layer we find Self-Healing for Structural Adaptation (SHSA) a 

technique for building resilient CPS which is developed by TU Wien. Solutions for trusted localization and 

orientation in space, useful in our Industry 4.0 use case are developed by TU Graz together with JKU Linz. Finally, 

we have an autonomous driving platform which is developed by TTTech. To build a reliable and functional IoT 

ecosystem one can use a recommender system, developed by Siemens. Last but not the least, AIT and TUG 

developed low-overhead encryption scheme, which is also implemented in FPGA by Siemens. DUK will provide 

concepts for achieving sensor security and low-level data integrity.  

IoT4CPS tools should support dependability in several levels of CPS hierarchy. Our encryption solutions would 

enable efficient and secure communication channel between devices with limited resources, which is the case in 

a typical IoT scenario. In extreme cases of devices uncapable of encryption, we can at least guarantee data 

authenticity by applying digital watermarking techniques. IoT recommender system further enhances 

dependability by guiding the user to select the appropriate protocols, thus making the entire system more 

reliable. On a platform level, we increase the trust in system by leveraging methods for trusted orientation and 

localization. A system which adopts our SHSA techniques gains the ability to manage unpredictable component 

failures, thus becoming more dependable. Finally, our design-time security and safety tools, V&V patterns and 

Cryptographic API development guidelines aim to increase dependability early on.  
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3. Application Layer Tools and Methods 

In this section we focus on IoT4CPS WP3 contributions for improving dependability on the application level. We 

report on our design time security analysis tools for model-based devilment, for security requirement 

management and threat modelling as well as safety and security risk assessment.  

3.1 GSFlow 

Our first contribution is a tool for standard-based product development management: GSFlow. It is one of the 

results of a more general effort to develop tools to support model-based development approaches and safety & 

security by design. 

The goal of GSFlow is to support the complete engineering lifecycle of safety and/or security relevant systems 

based on pre-defined processes, by guiding the user through the development process. Its main objective is to 

make standard driven development straightforward, especially for companies that are unacquainted with 

functional safety and security standards. The model implemented in GSFlow simplifies standard driven 

development by guiding the end-users through the development process and consequently offloads the effort 

from security experts, while still providing assurance. This is especially relevant to SMEs which only have a limited 

number of safety or security experts. 

The central output of GSFlow is a safety and/or security case which shall support companies two ways: (1) helping 

to reach assurance for their products and (2) allowing to summarize the argumentation why a system is 

acceptably safe and secure. To achieve this goal every project in GSFlow contains requirements which correspond 

to functional safety and security standards such as [37]. GSFlow provides standard conformant user management 

and utilizes tools to ensure the quality of an evidence. 

GSFlow provides a flexible framework for modelling and executing standards. It is also capable of executing 

plugins written by an external developer. This flexibility ensures that the specific needs of a company can be met. 

Furthermore, an external developer is only required to implement an interface according to their needs. For 

example, GSFlow can execute external plugins to generate reports, as well as to check the artefacts and 

requirements using Natural Language Processing methods. 

3.1.1 GSFlow Structure and Definitions 

In this section we provide more details about the operation of GSFlow. Requirements are defined as the entities 

needed to achieve the objective of the project. Two different kinds of requirements can be distinguished. The 

first kind of requirements are the standard requirements, which are derived from functional safety and security 

standards. They are needed to identify the goals that are obligatory to reach compliance to relevant standards. 

Secondly, the product requirements in GSFlow represent the requirements that are specific to a product. They 

can be linked to a standard requirement. Furthermore, the requirements in GSFlow are the key elements for 

documenting the workflow as they serve as an anchor to attach evidence and trace every action that is conducted 

on them while being processed. Once processing is completed and all evidence has been created, a requirement 

may enter the state of completion. 

Phases in GSFlow represent phases of a safety/security standard. GSFlow ensures that in every phase Standard 

Requirements that are specific to this phase need to be fulfilled. A phase can only start once all previous phases 

have been completed. Phases in GSFlow are used to structure requirements and define the order of execution 

in the workflow. 
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Figure 4: Illustration of workflow and fulfilment status 

GSFlow allow for integration with external tools. By implementing and using the interfaces provided by GSFlow, 

an external Developer can create plugins and an admin can upload them to GSFlow after conducting validation. 

These tools/plugins are then ready to be executed. The dataflow between GSFlow and the tool/plugin is 

conducted only through the API. The utilization of tools shall serve as quality assurance as well as provide 

convenience to the users working with GSFlow. 

GSFlow supports standard conformant user management. Different roles can be assigned to different users per 

project. Roles are based on a generic model of roles defined in different standards. In GSFlow, roles can be 

mapped to specific standards. The list of the supported roles includes: 

• Project Manager 

• Requirements Manager 

• Developer 

• Verifier 

• Validator 

• Assessor 

 

Figure 5: Basic responsibility chain in GSFlow 
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In GSFlow responsibilites are modelled on a per requirement basis. Each requirement has the required roles 

assigned to support the development chain defined in a standard. To be more precise, when the developer has 

finished their task, the verifier is assigned followed by the validator. Only when all the the responsible parties 

have marked their tasks as finished, assessment can take place. 

As discussed, GSFlow enables the end user to organize their workflow according to phases, work products and 

requirements deducted from standards. GSFlow also serves as a documentation platform and tracks every action 

that is conducted regarding a certain requirement and links evidences to those requirements. This way, GSFlow 

supports traceability. The flexible framework inside GSFlow enables tailoring of generic processes to company or 

project specific demands. When appropriately modelled, it can support a safety and security co-engineering 

workflow. To achieve this, different adequate standards need to be analysed and consequently modelled into 

one combined workflow.  

For example, the standards ISO/IEC 27002[35] and EN 50128 [34] contain requirements and methods 

emphasizing on availability, reliability, confidentiality, integrity and maintainability. These standards describe 

measures that need to be undertaken in order to assure the aforementioned attributes. SAE Standard J3061 [37], 

which is a Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,  describes security and its effects on 

safety on financial and operational basis and hence, availability and reliability. Security and measures to ensure 

integrity and confidentiality can be found in the IEC 62443 series [38]. By following the generated workflow, 

GSFlow makes the development of dependable IoT systems feasible.  

3.2 Failure Mode, Vulnerabilities and Effects Analysis 

Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) is a static method for security analysis. FMVEA is 

based on the Failure Mode and Effect Analysis (FMEA) and extends the standard approach with security related 

threat modes [23]. A failure mode describes the way the function of an element fails. A threat mode describes 

the way in which the identified function of an element can be misused. Threat modes classifies threats in six 

categories (Spoofing of user identity, Tampering, Repudiation, Information disclosure, Denial of service, Elevation 

of privilege). 

FMVEA consists of several phases, beginning with system modelling phase. Once this phase is complete the 

failure and threat modes for each element of the system model are identified. Depending on the domain, the 

system architecture and the knowledge about the system, failure and threat modes can be refined and extended. 

Each identified failure or threat mode associated with the element is investigated for potential effects. For modes 

with critical effects, potential causes are analysed and the likelihood for each cause is estimated. For threat 

modes, likelihood is determined using a combination of threat and system properties.  

Threat properties mainly describe the resource and motivation of a potential threat agent while system 

properties include reachability and system architecture. The system model is based on a three-level data flow 

diagram (DFD). Effects of failure and threat modes are presented at the context level of the diagram, which shows 

the interaction between the system and its environment. Failure and threat modes are located at the level 1 

DFD. Vulnerabilities and failure causes are based on the level 2 DFDs. 
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Figure 6: An example model as an input for analysis with FMVEA 

Figure 6 shows the diagram of an example use-case in which a set of actors is controlled by an CPU, based on 

some sensor input. Control Strategy can be defined and monitored in some higher layers. The example model 

will be used to perform an analysis with FMVEA. The blue squares represent the root environments of a specific 

level. Each orange node can be seen as an operating element inside the environment. Green squares represent 

sub-environments inside the root-environments which encapsulate their own operating elements. Black squares 

display the defined attributes/properties for the diagram elements. For example, the “CPU” has the 

attribute/property “WCET” (“Worst Execution Time”) with a value of “30 ms”.  
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Figure 7: The diagram modelled in FMVEA and the rules 

Figure 7 shows the diagram from Figure 6 modelled in FMVEA. On the left-hand side, we can see the diagram 

related actions like “Create Environment”, “Create Node” and “Create Node”. An Environment can be considered 

as a container, which provides general attributes to his children. Attributes can be focused on Security and Safety. 

The attributes of an element are directly displayed below the diagram. Figure 7 also displays the rules which 

should be used to analyse the use-case diagram. From the left to the right are the names of the rule then a short 

description and the “Rule”. The “Rule”-column is the most important one, because here the actual rule for the 

analyser is defined. The content of a rule is defined by the grammar shown in Figure 8. 

 

Figure 8: Example of the FMVEA grammar 
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Figure 9 displays the results of the use-case analysis. The previously created rules are applied on the selected 

diagram. 

 

 

Figure 9: Analysis results for the defined rules and the diagram 

 

From left to right you one can observe the applied rule and the results of the specific rule on the diagram. The 

affected elements and connections can be viewed in the diagram if the user clicks on the “Show”-button to the 

right.  Inside the diagram the affected elements and connections get highlighted by a red border as you can see 

in the Figures 11-13. 

 

 
Figure 10: 1st rule results 

 

In Figure 10 you can see the affected elements of the first rule. The Definition of the first rule says that if there 

is any environment with the property “ACCESS Control=false” which contains a child object with the property 

“HMI ACCESS with password=false” then there is a security problem. As one can observe from Figure 6 we initially 

defined the “Control Station” with “ACCESS Control=true” so there is no problem even if the “Control Station” 

has the property “HMI ACCESS with password=false”. However, if one observes the “Station 1” and the 

“Engineering Station” then both criteria are fulfilled, and this is the reason why these two objects are the affected 

objects of the first rule. 
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Figure 11: 2nd rule results 

 

In Figure 11 you can see the affected connections of the second rule. The Definition of the second rule says that 

if there is any connection between two objects which do not share the same root object then the connection 

must be encrypted. One can observe from Figure 6 we never defined an encryption property for any connection 

inside the diagram. For example, take the connection between the “Control Station” and “C2”. The root object 

of the “Control Station” is the “Control Center” and the root object of the “C2” is the “Station Level” but they 

share a connection. Now let’s consider the connection between the “C2” and “C1”. The root object of both 

objects is the “Station Level”. They share the same root element as the same parent element, therefore this 

connection does not represent a potential problem. 

 

 
Figure 12: 3rd rule results 

 

In Figure 12 you can see the affected elements and connections of the third rule. As you can take from Figure 6 

we set the WCET of the CPU as “30 ms”. The Definition of the third rule says that if the WCET inside the CPU is 

higher than “20 ms” the actuator may not react in time to the sensor data. The sensor data is coming from the 

“Data Input” (DI) then the data is processed inside the CPU with a WCET of 30ms and then sent to the “Actuator” 

over the “Data Output” (DO). This is the reason why the “DI”, “CPU”, “DO” and the “Actuator” are affected 

elements in this case. The connections between these objects transport the data and are affected connections 

in this case. This rule could be expanded by additionally taking into account the latency of the connections. 
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3.3 Threat Modelling 

A secure system can be designed and developed only if security issues are well-identified and addressed 

appropriately in the early stages of the system development. That is considered a significant advantage because 

once the system is developed, it becomes harder to add security countermeasures. ThreatGet is a toolbox for 

Enterprise Architect, which is a widely used tool for Model-Based Systems Engineering. ThreatGet identifies, 

detects, and understands potential threats in the foundation level of system models. It supports the initial steps 

of the developing system process to guarantee the security by design. The following figure depicts an example 

design which a user can specify in ThreatGet, in order to perform security threat analysis. 

 

Figure 13: IoT-based Smart Factory 

Our Figure 13: IoT-based Smart Factory illustrates an example of IoT application in a smart factory, which is one 

of two main use cases of IoT4CPS project. The example contains one or more sensors and camera units for 

collecting and gathering information about the production line. The collected data is processed by a control unit, 

that handle and manage actions by sending signals to actuator units such as robotic arm and engine as defined 

in the figure. The data is sent to a centralized data storage and processing unit for monitoring the quality of the 

production. 
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In such a heterogeneous and distributed system, potential security threats can exist in any component, which 

may compromise the operation of the entire system. In order to identify potential threats in our system, we 

apply ThreatGet. The threats are defined according to the dataflow from the source components to the targets. 

According to the security properties of these units, some vulnerabilities could be exploited be threats. 

In Figure 13 the Control Unit takes the central role in the Smart Factory model. This component communicates 

with the data storage through a gateway, which runs a certain communication protocol. Depending on the 

gateway device, it can provide low or high security features. In our model, we can analyze devices with different 

levels of security by adjusting the possible security parameters of the model. We model possible security 

mitigation measures in the communication flow between the Control Unit and the Gateway. The features 

include: Source and Destination Authentication, Confidentiality and Integrity. We can set these parameters to 

values which correspond to a real device. 

In Figure 14 we can observe that if the HTTP protocol has mitigation measures switched off, the communication 

channel introduces 6 different threats. Once we introduce the mitigation measures in the communication 

channel the number of threats reduces to 4. 

 

 

Figure 14: The impact of introducing a mitigation measure 

As a result of the analysis, ThreatGet detects 32 potential threats, that are classified according to the STRIDE 

model (i.e., Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service (DoS), and Elevation of 

Privilege). Spoofing represents an attempt by a person or program to identify itself as another by falsifying data, 

to gain an illegitimate advantage. Data tampering is an attempt to maliciously modify the data through 

unauthorized channels. Repudiation is a kind of attack which manipulates the log data in the computer systems, 

in order to conceal traces in the log. Denial of Service and Elevation of privilege are well-studied threats, where 

an attacker is jamming the access to the system resource, and when an attacker attempts to gain more access 

rights than allowed, respectively. The number of the detected threats according to the STRIDE model is depicted 

in Figure 15. 
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Figure 15: Distribution of identified threats according to the STRIDE model and all potential threats listed 

 

Afterwards, the risk assessment process is applied to evaluate risk severities of the detected threats according 

to the values of the impact and likelihood parameters. The ThreatGet’s user can select the parameters of the  

impact and likelihood to estimate the risk severity, as shown in Figure 15. There are five parameter values of the 

Impact and Likelihood are used in the estimation process to determine the risk severity level of threats. Figure 

16 illustrates the levels of the impact and likelihood that are used by ThreatGet for the risk assessment process.  

 

Figure 16: Risk assessment chart 
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The next step is to address the identified potential threats by the most applicable security countermeasure for 

mitigating the overall risk of the predefined system model. Furthermore, we use IEC 62443 as the most suitable 

security standard to provide a flexible framework for addressing current and future security vulnerabilities could 

be exploited by potential threats [29].  In this case we should define two main values that could help to reach 

the high level of security protection. The first one is called the Security Achieved (SA), this value defines the 

current security level that is achieved after applying security countermeasures against security vulnerabilities. 

The second value is to define the actual security goal that the system architect wants to be achieved this 

parameter is called Security Target (SA) [28]. 

In this example we claim that we are looking forward to adding all the threats with the highest severity level. 

Furthermore, the SA = 7 (the total number of extreme potential threats in this example), and SA = 0 because 

there are no security countermeasures are applied yet.  The following part discuss the security treatment process 

for addressing the security threats by security countermeasures.  

3.3.1 Risk Treatment for the Identified Extreme Threats 

This process plays an important role to address potential threats with security countermeasures that should be 

considered in the system developing phases to keep the risk always low. The system security target (ST) is defined 

to estimate the maximum-security level needs to be achieved. Also, the current status of the system security 

level is defined as the security achieved (SA). 

 
In this example, we are looking forward to reducing the security level of the unacceptable risk level. Furthermore, 

we focus on the Extreme severity level of threats (unacceptable risk level) that need to be addressed by proper 

security countermeasure. Thuss, ST is seven (the total number of extreme severity risk), and SA is one until 

addressing these threats. The value of SA is incremental according to change in security level after applying 

additional security countermeasures. This process is completed if SA = ST; otherwise, additional security 

countermeasures should be applied for security improvement. Figure 17 illustrates the difference between the 

current and the target security levels before applying security countermeasure. 

 

 

Figure 17 The current (blue) and target (orange) security levels before applying security countermeasures 

 

We proceed with handling security issues threat by threat and showing the outcome of applying a mitigation 

measure. The following sections define the selected security countermeasure based on IEC 62443 part 4-2 for 

addressing the existing potential threats. 

3.3.2 Risk Treatment for Threat 1 and Threat 2 

Threat1 Title: Message replay attacks in Target 
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Threat1 Category: Information Disclosure 

Threat1 Origin:   

 

Figure 18 Threats 1 and 2 propagation source 

 

The following table shows a list of selected security countermeasures for addressing this threat. These security 

countermeasures should be applied to mitigate the threat. The following abbreviations are used: CR: Component 

Requirement, NDR: Network Device Requirements, and EDR: Embedded Device Requirements. 

IEC62443 Classification Name of the security requirement 

CR 2.11 Timestamps 

CR 2.10  Response to audit 48 processing failures 

CR 2.12  Non-repudiation 

NDR 3.14 Integrity of the boot process 

EDR 3.14  Integrity of the boot process 

Table 1 IEC62443 Requirements for Threat1 

Threat2 Title: Target may be tampered 

Threat2 Category: Tampering 

Threat2 Origin: shown in Figure 18 

 
 
 

The following table defines a list of the chosen security countermeasures for addressing threat2.  

 

IEC62443 Classification Name of the security requirement 

NDR 3.11  Physical tamper resistance and detection 

CR 1.9  Strength of public key-based authentication 

NDR 3.14  Integrity of the boot process 

EDR 3.11  Physical tamper resistance and detection 

EDR 3.14  Integrity of the boot process 

Table 2 IEC62443 Requirements for Threats 3&4 

 

3.3.3 Risk Treatment for Threat 3 and Threat 4 

Threat Title: Gaining unauthorized access to files or data on Source 

Threat Category: Information Disclosure 

Threat Origin:  
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Figure 19 Threats 3 and 4 propagation source 

 

The following table shows the chosen security requirements for these threats. 

 

IEC62443 Classification Name of the security requirement 

CR 4.1 Information confidentiality 

CR 4.3 Use of cryptography 

CR 3.1 Communication integrity 

EDR 3.2 Protection from malicious code 

NDR 3.2 Protection from malicious code 

CR 3.8 Session integrity 

Table 2 IEC62443 Requirements for Threats 3&4 

3.3.4 Risk Treatment for other Threats  

 
Threat5 Title: Services from back-end server disrupted 
Threat5 Category: Elevation of Privilege 
Threat5 Origin: shown in Figure 19 
 

 

Figure 20 Threats 5, 6 and 7 propagation source 

 

Table 4 shows the selected security countermeasures for threat5. 

 

IEC62443 Classification Name of the security requirement 

CR 1.1 Human user identification and authentication 

CR 2.1 Authorization enforcement 

HDR 3.10 Support for updates 

NDR 3.10 Support for updates 

HDR 3.14 Integrity of the boot process 

NDR 3.14 Integrity of the boot process 

Table 3 IEC62443 Requirements for Threat 5 

 

Threat6 Title:  Deliver Malicious Updates to Target 

Threat6 Category: Spoofing 

Threat6 Origin: shown in Figure 20 
 

Security Countermeasures: 
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The following Table lists the possible security countermeasure that should be applied to mitigate the risk of 

Threat6. 

IEC62443 Classification Name of the security requirement 

CR 3.8 Session integrity 

CR 1.2 Software process and device identification and authentication 

CR 1.5 Authenticator management 

HDR 3.2 Protection from malicious code 

NDR 3.2 Protection from malicious code 

CR 1.7 Strength of password-based authentication 

CR 6.2 Continuous monitoring 

Table 4 IEC62443 Requirements for Threat 6 

 

Threat7 Title:  Cause the Target to Crash or Stop or disabling functions 

Threat7 Category: Denial of Service 

Threat7 Origin: shown in Figure 22 

 

Security Countermeasures: 

The following list of security requirements are selected to address the potential threat7. 

 

IEC62443 Classification Name of the security requirement 

CR 1.11 Unsuccessful login attempts 

CR 7.1 Denial of service protection 

NDR 5.2 Zone boundary protection 

Table 5 IEC62443 Requirements for Threat 7 
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3.4 MORETO 

The correct security requirement identification and efficient security requirement management are essential for 

any security engineering process. We can design, implement, and test a secure system only if we know the exact 

security requirements. Achieving an efficient requirement management is a challenge in system development. 

The Model-based Security Requirement Management Tool (MORETO) serves a tool for security requirements 

analysis, allocation, and management using modelling languages such as SysML/UML. MORETO is an Enterprise 

Architect (EA) plugin for managing the IEC 62443 security standard. It is a reliable and a flexible to model safety 

& security requirements suited to different components and system architectures. It generates a list of security 

requirements in a given diagram, which can help the user to build-up a secure infrastructure. Figure 21 shows a 

simple example of different components which interact together through a network.  

 

 

Figure 21 Simple network elements for system engineering model by MORETO 

 

MORETO scans all the elements of a given model and automatically generates a list of security requirements 

based on expert knowledge encoded in the MORETO knowledge base itself and on the description contents of 

the IEC 62443. Figure 22 shows a list of identified security requirements of the Router and Switch devices 

respectively. 

Figure 22 IEC 62443 Security standards for router and switch devices 
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3.5 Safety and Security co-engineering 

In order to build dependable IoT systems, it is insufficient to regard concepts of safety and security separately 

since safety and security of IoT are not independent. Therefore, we propose a combined risk assessment 

approach for safety and security and demonstrate it using tools developed in IoT4CPS project. 

The state-of-the-art approaches in Threat Analysis and Risk Assessment (TARA) such as Microsoft STRIDE and 

FMVEA provide a risk assessment approach but they do not consider multiple attacks (attack combinations via 

‘OR’, ‘AND’, ‘SAND’ (sequential AND)) and multi-stage attacks. On the other hand, Attack Tree Analysis (ATA) 

approach considers such attacks but either in a purely qualitative or purely quantitative fashion (which is not 

feasible for most applications). There is no TARA-based approach which considers how the likelihood (final risk) 

can be evaluated in case of multiple attack combinations and multi-stage attacks.  

The security risk assessment is performed combined with ADTool [30], which provides a simple way to create 

and edit attack trees. Attack trees are conceptual diagrams showing how an asset, or target, might be attacked. 

Attack trees have been used in a variety of applications. The attack tree is then exported as an XML file to the 

scripts [32] which implement the risk assessment algorithm. During evaluation two inputs are required by the 

user: the threat level scores for all the BAS (Basic Attack Steps) and Impact level scores for all the Higher Attack 

States. 

3.5.1 Security Risk Assessment with Attack Trees 

The generation of attack trees, which is a prerequisite for Attack Tree Analysis, is presently not covered in our 

work and is a subject of future work. The approaches such as Microsoft STRIDE generate general threats 

corresponding to STRIDE category by a predefined mapping of these threats to general elements of a system 

(approach represents almost all systems with four general elements). Therefore, the STRIDE and Data Flow 

Diagram (DFD) approach are sufficient to generate threats for each element. However, to generate an attack 

tree we also need to know how these threats affect each other, which can be learned from security attack 

databases. In case of automotive, AUTO-ISAC (SAE Vehicle Electrical System Security Committee) or public 

Automotive Attack Database [31] can be considered as a relevant data source. The concrete specification of 

system design is not known in the early stages of design process, which renders the very large list of all the 

possible attacks, thus making the STRIDE approach preferable. However, in the later part of the design phases 

specific attacks can be used to generate attack tree. 

We propose a Security Risk assessment via attack trees, for evaluation of logical combination of attacks, based 

on the following principles: 

a) For considering OR combination of attacks, we will evaluate the canonical form (DNF-Disjunctive Normal 

Form) of the attack tree. In canonical form we get all the attack paths related with OR (disjunction) 

relation, to an attack state. 

b) Each attack path consists of several basic attack steps related with AND (conjunction). This means the 

attack path will be successful if and only if all the basic attack steps involved are successful. 

c) For considering AND combination among basic attack steps, we evaluate the final likelihood as same as 

the lowest of the threat level, as this is the critical threat and system cannot be compromised until this 

threat succeeds. 

d) For considering OR combination, the canonical form gives all attack paths to each state related with OR 

(disjunction) and we do the risk assessment for each attack paths individually. 

e) For considering Sequential AND attacks, same as AND, we did not consider impact of sequential 

dependence on threat level (likelihood). The reachability score for following attacks can be taken as 

preceding attack, as this provides a gateway to the following attacks. 
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3.5.2 An example of Security Risk Assessment with Attack Trees 

The Attack Tree shown in Figure 23 has been constructed (by our judgement for possible attack scenario) from 

the threats listed in [40]. Since the attack tree lists specific attacks instead of generalized threats (STRIDE 

category), the analysis is performed in a later phase of the design process, and basic security strategies have 

been already adopted to secure system from basic possible attacks.  

 

Figure 23 An attack tree for Security Risk Assessment 

 

Steps for risk assessment using the ADtool  

Step1 – The attack tree is drawn with help of ADTool, as shown in Figure 24. 

Step2 – The model is imported to VBA, Excel, as an .xml file.  The VBA scripts sorts basic attack steps (which are 

at bottom of attack tree) and higher attack states.  

Step3 – The evaluator needs to provide scores for threat level parameters and Impact level. 

 



IoT4CPS – 863129   D3.2  

 PUBLIC 

 

Version V1.1  Page 26 / 41 

  

 

Figure 24 An attack tree obtained using ADT tool 

Step4 – The VBA scripts then evaluate, for all higher attacks, which are the basic attack steps involved and how 

they are related using ‘AND’, ‘OR’, ‘SAND’, as shown in Figure 25.  

 

Figure 25 Basic attack steps and relations 

 

Step5 – The implemented scripts evaluate canonical form (disjunctive normal form) for all higher attack states 

as shown in Figure 26, using the information from Figure 26. For example, the higher attack state ‘G1’ consist of 

three attack paths, these attack paths are related to each other with disjunction (HAS will be compromised if any 

of the three attack paths are successful). The basic attack steps inside each attack path are related with 

conjunction or sequential conjunction, i.e. attack path will succeed only if all the basic attacks are successful. 

 

Higher attack states (HAS) 

Basic attack steps (BAS) 

This represents logical combination of 

BAS to reach corresponding HAS 
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Figure 26 Disjunctive Normal Form for all higher attack states 

Step 6 – Considering strategy listed in section 7.1, the critical basic attack and its likelihood will be evaluated 

for each attack path. Finally, the risk matrix will be obtained using risk = likelihood x impact, shown in Figure 27. 

 

Figure 27 Calculated Risk Matrix 

The entries of the matrix represent the risk scores, the row entry tells us which basic attack step is critical, and 

column entry shows for which higher attack state.  

 

3.5.3 Safety Risk Assessment 

There is a number of safety risk assessment methodologies, each having certain benefits and certain limitations. 
For example, the limitation of the Failure Mode and Effect Analysis is that it is more suited to analyzing systems 
which have no redundancy and no multiple failures. Fault Tree Analysis (FTA) on the other hand allows logical 
combination of events but is generally qualitative, can be very complex to be solved analytically and doesn’t 
support repair events. Continuous Time Markov analysis supports repair events but can cause state explosion 

Higher attack state 

Attack paths 
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problem for complex systems and supports only exponential probability distribution functions. Therefore, hybrid 
complex systems such as standby switching systems, where the main system, switching system and standby 
system each has different failure distribution, it is very complex to solve analytically. In such cases Stochastic 
Colored Petri Net (SCPN) models with simulation are used, they also take care of state explosion problem. 
Therefore, for redundant systems and complex dynamic systems (switching systems) we should use SCPN model 
and simulation, such as TimeNET tool.  
 
A complex system however can use individual benefits of each of the methodologies. Such as the highly 
redundant and complex part of the system can be independently analyzed with SCPN, and the equivalent system 
can be replaced by a single element with corresponding failure rate. The modified system can be analyzed with 
the help of FTA.  
  

 
 

Figure 28 A stochastic coloured Petri net 

 
For example, the above system consists of 11 components, which is represented as ‘11’ tokens present at place 
P0 in figure 28. Starting from left side, the two components are in conjunction, i.e. the failure will propagate, if 
and only if both components fail. The rectangular boxes represent the transition rate (failure rate). ‘D’ represents 
the state when the system is down. Mean time to failure to state ‘D’ can be evaluated using steady state 
simulation.  
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4. Platform Layer Tools and Methods 

In this section we focus on IoT4CPS WP3 contributions for improving dependability on a CPS platform layer. 

Specifically, we focus on a method for improving system resilience – Self-Healing by Structural Adaptation. 

4.1 Self-Healing by Structural Adaptation 

Failed observation data may compromise system's safety. For instance, an erroneous detection of surrounding 

vehicles that is input to the path planning unit of an autonomous vehicle might cause fatal consequences. 

Traditional fault-tolerance aims to overcome such critical failures. 

Self-healing adapts the system during runtime to mitigate failures. Adaptation is a challenging process that can 

be summarized by four abstract steps:  

• collect environment information and derive internal system properties (state estimation) 

• analyze the observations (failure detection) 

• decide how to adapt to reach a desired state (find a recovery strategy, e.g. using an ontology)  

• act (recover) 

Self-healing is the ability of the system to react also to failures not specifically considered during design-time, 

e.g., faults caused by functional, environmental or technological changes or zero-day malware. A very promising 

approach of achieving self-healing is through structural adaptation (SHSA), by replacing a failed component with 

a substitute component by exploiting implicit redundancy (Fig. 29) [24][25]. 

The implicit redundancy takes a different approach, compared to explicit redundancy which is achieved by 

duplicating critical system components and voting over the value of the result. Implicit redundancy is the 

principle of extracting the missing information about a CPS property from related properties. For instance, the 

property a, provided by service A, can be substituted by a’, which is derived from the combination of properties 

b and c. 

Figure 29: Types of redundancy - explicit (left) and implicit (right) [25]. 

The algorithm uses a knowledge base, modeled as an ontology which defines the interrelation of properties in 

the CPS as well as additional runtime information of the CPS. 

SHSA can be used to replace failed observation data. It monitors and substitutes CPS variables (cf. signals) in 

messages communicated between application components (e.g., sensors and controllers) based on a knowledge 

base. SHSA can be encapsulated in one or more components listening and acting on the communication network 

of the IoT. The detection identifies a failed component by comparing its output to related information on the 

network using the relations encoded in the knowledge base. A failed component may be removed or shut-down 

to avoid faulty messages and possibly propagating the failure. Then SHSA spawns a new component – the 

substitute for the failed one. The substitute subscribes to related information and combines these (again by using 

the relations in the knowledge base) to provide the needed information. 

In this project we specifically target extensions to the knowledge base and substitution, the architectural 

requirements regarding security and the fault detection. Preliminary results include: 
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• Guided search of a substitution (speed-up of the recovery process). Evaluation and selection of a 

substitution extracted from the knowledge base [26]. 

• Architectural requirements for SHSA and considerations w.r.t. security (will be reported in D6.1). 

• Extensions to the knowledge base: encode relations in Prolog (rule-based knowledge base to enable 

requirements checks). Implement state-aware relations (formerly only state-less relations were 

possible). Demonstration of how to handle time in relations. 

• Fault detection: automatic generation of a runtime monitor for related information considering 

availability of the information and possible time delays (e.g., latency, physics). 

Related work is presented in [27] and D2.1: “Consolidated state-of-the art report”. Case studies and examples 

can be found in [25], [27] and D6.1.1: “Architecture for safe and secure automated driving platform 

demonstrator”. 

4.2 Architectural Requirements of SHSA 

The Architectural Requirements of SHSA are already reported in D3.3. We provide a short reference here, for the 

sake of completeness. 

 

# SHSA Requirement Rationale 

 

1 Dynamic Composability Add substitutes, remove/replace faulty components. 

1a Reconfigurable Information Flow Reconfigurable sender/receiver of messages. 

1b Common Communication One interface to access information. 

1c Freedom of Interference Adding a substitute shall not alter the system. 

1d Fault Containment Avoid fault propagation. 

2 Information Access For learning, monitoring and substitution. 

Table 6: Requirements to deploy SHSA on a CPS. 

The system shall be dynamically composable out of several subsystems or components while preventing side 

effects or undesired emergent behavior. This requirement enables independent development of system 

components, reusability of components, and reconfigurability of the system during runtime. In adaptive CPS we 

need dynamic composability in order to be able to add, change or remove components during runtime.  

By further refining the dynamic composability requirement we get the following: 

• Reconfigurable Communication: The flow of information shall be reconfigurable. Services share 

information, hence, when a service is added or removed, the communication to and from the service 

must be installed. 

• Common Communication Interface: Since the system is assembled out of several subsystems, a 

common communication interface must be provided to the reconfiguration mechanism. Hence, SHSA is 

a challenge especially in heterogeneous systems. 

• Freedom of Interference: The reconfiguration mechanism shall not compromise the system’s 

functionality.  

• Fault Containment: A failure of a service shall not propagate.  

Information Access requirement relates to enabling access to the information related to system state. 
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5. Network Layer Tools and Methods 

In this section we focus on IoT4CPS WP3 contributions for improving dependability on network CPS layer. 

Specifically, we focus on a recommender systems which should help the IoT system architects to select the 

protocols which meet the requirements of their systems. 

5.1 Recommender System for Dependable IoT applications 

Along with the growing market of Industrial IoT (IIoT) applications, the set of available network technologies is 

continuously expanding. Today, developers have a huge set of connectivity networks at their disposal, ranging 

from short-range networks such as Bluetooth to global connectivity via satellite networks [1]. Figure 30 tries to 

give an overview of existing technologies while not claiming to be exhaustive. Depending on the specific use case 

of each IIoT application, different approaches constitute the most cost-effective network technology solution, as 

there is no “one-size-fits-all” solution.  

 

 
Figure 30:Technology overview [1], [2], [3], [4] 

Choosing the set of network technologies, which fits the needs of the IIoT use case must be a careful trade-off 

between the ability of the technologies to meet specific functional requirements and the related costs [1]. 

Complex IIoT systems — as sketched in Figure 31 – have a significantly larger set of dependability requirements 

compared to “normal” IoT applications. As the systems connectivity network plays a major role in fulfilling these 

requirements, choosing the correct set of technologies is crucial. 
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Figure 31: A complex IIoT system comprising file, edge and cloud components 

 

5.1.1 Aim of the Recommender System 

Depending on the application and its scope, different system architectures can be applied. However, most 

applications follow the generic system architecture. This architecture comprises different system levels and 

possible interconnections.  

The challenge in building such systems lies on interconnecting already ongoing engineering activities and 

brownfield devices at multiple levels and enrich them with tools to address dependability aspects of the system. 

Usually such a system design is derived by experts and causes a lot of effort and state-of-the-art expertise. The 

proposed approach tries to perform the design and partial configuration of a system in a semi-automatic way. 

Thereby, specific system constraints and requirements will be considered. They are ranging from basic 

communication properties such as energy consumption, bandwidth and latency to specific dependability 

attributes such as integrity and availability.  

The system designer has to provide application specific requirements (e.g., purpose, location, connectivity, 

power supply) and high-level architecture patterns (e.g., direct connection field cloud or multilevel 

communication via edge devices). Based on this information, the recommender system is capable of computing 

a feasible system setup (system topology, technologies to apply within the system) regarding a specified use 

case, without the need of consulting experts. Figure 32 illustrates the workflow of the recommender system. 

Beside generating a suggested system topology, the recommender system will match the application’s demand 

regarding dependability attributes with the offered attributes of the possible technologies. Thereby, qualitative 

and quantitative measures are applied. Based on this, a final selection of technologies is possible.  

 

Figure 32: Illustration of the workflow of the recommender system 
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5.1.2 Knowledge Base 

The aimed ability of the recommender system is based on maintaining a database, comprising of the technical 

and functional characteristics of all the available network technologies. The database of the recommender 

system is based on the Open Semantic Framework (OSF). The open semantic framework, cf. [34], structures 

information in domain-specific knowledge packs (KP), which depend on several core ontologies (containing 

general information about concepts, quantities, units, events etc.). The OSF allows for a modular management 

of knowledge specifically tailored to the application as sketch in Figure 33. OSF knowledge can be accessed and 

managed during runtime via a REST API and thus easily integrated in established process environments. Using 

construct or update features, it is possible to curate and extend both the available knowledge in the OSF as well 

as construct or update the corresponding queries. Additional domain-specific knowledge packs and domain 

specific queries can be added to extend the functionality of the framework towards the desired application 

domain. 

 

 

Figure 33: Modular architecture of the Open Semantic Framework 

Based on the OSF different KP were developed as basis for the recommender system as depicted in Figure 34. 

The “protocol KP” comprises the basic properties of communication technologies. Besides that, the KP focusses 

on measures regarding dependability. These measures contain a set of dependability methods such as multipath 

routing, frequency hopping, or retransmit mechanisms. In addition to the method, also the layer (w.r.t. the ISO-

OSI reference model) is specified. The dependability measure of the protocol KP is further linked to concerned 

threats of the dependability KP. Threats are basically described in terms of affecting dependability attributes and 

their impact on the overall system. The impact in this KP is agnostic w.r.t. to application domains or systems.  

If a more complex modelling is necessary, a KP based on the threat model introduced in Section 4 and 5 can be 

designed. With this model a higher level of detail can be achieved than in the basic model. The OSF enables to 

curate dependability threats independently from protocols (different knowledge packs). Additionally, the links 

across different knowledge packs are used to assess how well specific protocol instances can deal with threats. 

This allows an assessment of the overall dependability of a set of protocols across different threat levels on 

different layers.  
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Figure 34: Core KP for the recommender system 

5.1.3 User Interface 

A first sketch of a user interface is depicted in Figure 35. On the left-hand side, it allows the system designer to 

select the environment a high-level requirements. According to this selection, the centre of the UI reflects the 

architecture of the overall system. Additionally, it is possible to set specific numerical parameters for the overall 

system on the right-hand side. The bar on the top finally depicts considered. According to the traffic-light 

colouring, the technologies are justified.  

 

 

 

Figure 35: Illustration of the Recommender System with possible input parameters 

5.1.4 Examples 

We present two examples that illustrate the selection of protocols according the specific requirements. While 

the first example aims at designing a conventional industrial IOT system, the second example illustrates a 

configuration with dependability demands. In both examples, prerequisites regarding the availability of KP are 

stated. Depending on the aim of the design and the level of details, different KPs are necessary.  

5.1.4.1 Identification of suitable communication protocols 

• Prerequisites 

o Knowledge-pack containing specifications of wireless protocols: 
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▪ Network-Type 

▪ Bandwidth 

▪ Latency  

▪ Energy Consumption 

▪ Coverage 

▪ Number of supported Nodes 

▪ Infrastructure Constraints  

▪ Dependability Assessment  

o Knowledge-pack containing options for recommendation: 

▪ Purpose (monitoring, control)  

▪ Communication scope (local, local-aggregation2cloud, cloud) 

▪ Use-case environment  

▪ Amount of devices 

▪ Amount of required transmissions 

▪ Expected size of transmissions 

▪ Tolerable delay (linked with communication use-case) 

▪ Own Infrastructure 

▪ Required life-span of devices 

▪ Operation Cost 

• Example Input 

o Purpose: Monitoring  

o Communication scope: Local-Aggregation2Cloud 

o Use-case environment: Urban  

o Amount of devices: 200 sensors per aggregator 

o Amount of required transmissions: 480 (sensor / aggregator), 96 (aggregator / cloud)   

o Expected size of transmissions: < 10 Byte 

o Tolerable delay: < 200 ms 

o Own Infrastructure: unspecified 

o Required life-span of devices: > 1 year 

o Operation Cost: <1€ / year 

• Example Output 

o Potential Solutions Sensor-Aggregator: 

▪ BLE 802.15.1, 802.15.4 

▪ 802.15.4e, 802.11 

o Potential Solutions Aggregator-Cloud: 

▪ NB-IoT, LoRaWAN 

5.1.4.2 Identification of suitable communication protocols including dependability aspects 

• Prerequisites:   

o Knowledge-pack containing specifications of wireless protocols: 

o Adapted Options Knowledge-pack including dependability of solution: 

▪ Dependability Requirement 

o Knowledge-pack containing available protocol dependability features  

▪ Confidentiality (protection against, sniffing, tampering, eavesdropping) 

▪ Integrity (protection against sinkhole, spoofing, relay attacks) 

▪ Availability features (protection against jamming, desynchronization, 

packet/connection loss) 

• Example Input 
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o Purpose: Monitoring  

o Communication scope: Local-Aggregation2Cloud 

o Use-case environment: Urban  

o Number of devices: 200 sensors per aggregator 

o Amount of required transmissions: 480 (sensor / aggregator), 96 (aggregator / cloud)   

o Expected size of transmissions: < 10 Byte 

o Tolerable delay: < 200 ms 

o Own Infrastructure: unspecified 

o Dependability Requirement: High 

o Required life-span of devices: > 1 year 

o but Operation Cost: >1€ / year 

• Example Output 

o Potential Solutions Sensor-Aggregator: BLE 802.15.1 Mesh Topology 

BLE supports channel hopping, which mitigates the impact of other 2.4Ghz technologies on 

the communication. A mesh topology further strengthens the dependability of the solution 

o Potential Solutions Sensor-Aggregator: LTE   
Given the high dependability requirements the solutions previously recommended 
(LoRaWAN, NB-IoT) are no longer suitable. While LTE leads to higher costs it allows for a 
higher dependability 

  



IoT4CPS – 863129   D3.2  

 PUBLIC 

 

Version V1.1  Page 37 / 41 

6. Conclusion 

Deliverable “D3.2: Guidelines, processes and recommendations for the design of dependable IoT Systems” 

provides a detailed insight into state-of-the art tools and methods, which are the outcome of IoT4CPS project 

WP3. The methods and tools are strongly motivated by our two main use cases of Automated Driving and Smart 

Production. The aim of methods and tools of D3.2 is to build dependable systems by improving their safety & 

security using: 

• Security tools such as ThreatGet, GSFlow, Moreto 

• Security risk assessment methods such as FMVEA 

• Co-engineering methods for safety and security 

• Resilience techniques and architectures, such as Self-Healing by Structural adaptation 

• Trusted localization and orientation 

• Recommender Systems for building large IoT-based applications 

• Sensor-level security 

• High-level guidelines on writing crypto APIs 

• V&V patterns for Security Risk Assessment  
 
Our tools and methods cover a wide spectrum of both design time and runtime methods which aim to make the 

system more safe, secure, resilient to failures, trustworthy and reliable. We strongly believe that dependability 

is a complex system property which must be addressed at different levels of complexity and multiple stages of 

product lifecycle. IoT4CPS consortium is looking forward to further improving our tools and methods in order to 

provide the industrial partners the means to achieve dependable IoT systems.  
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7. Appendix: V&V pattern – Security Risk Assessment with Attack Trees 

In this appendix we provide a formalized abstraction, namely a V&V pattern, for our Security Risk Assessment 

from section 7.1.1. 

 

 

Figure 36: A pattern for Security Risk Assessment 

 

The definitions from the pattern include: 

• Attack Tree (AT): a tree graph with inner nodes representing logical OR/AND/SAND operations of lower 

level tree elements 

• Basic Attack (BA): bottommost AT nodes, representing atomic or elementary security threats 

• Higher Attack State (HAS): all not BA-nodes in the AT. 

• Impact (Strength) / Severity Level: severity of consequences of a successful attack 

• Likelihood / Threat Level: probability of occurrence of a certain threat or attack 

• Risk: Impact * Likelihood 

• Target System (TS): the CPS for which security risks shall be analyzed 

 

Participants and important artefacts include: 

• System Expert: a person that has sufficient knowledge about the TS for providing all relevant 

information to the Security Expert 

• Security Expert: a person who can identify all BAs relevant for the TS, and who knows how they 

interrelate for building the AT. 

• Target System Description: information at sufficient detail about the TS that can be used by the experts 

for building the appropriate AT. 
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• Attack scenarios: considering known attack scenarios help avoiding omission of security threats. 

• Attack Tree: tree-like graph representing derivation of complex threats from basic attacks. 

• Basic Threat Levels: likelihoods of BAs. 

• Higher Impacts: impacts of higher nodes in the BA tree (that are known a priori). 

• Normalized AT: AT turned into disjunctive normal form (DNF). 

• Enriched AT: normalized AT, annotated with basic threat levels and higher impacts. 

• AT with Likelihoods: enriched AT with likelihoods computed for all nodes. 

• Risk Matrix: matrix showing the risks of all attacks for all target system. components/items. 

 

Actions and collaborations include: 

(1) Build Attack Tree:  

o Identify the BA that are principally possible for the given TS. 

o  Multiple attack scenarios are considered by combining BAs via ‘OR‘, ‘AND’, and ‘SAND’ 

(sequential AND) nodes, reflecting experts knowledge about their combinatorial 

characteristics. 

o  Multi-stage attacks are considered by iterating step 2, including new nodes, in a tree-like 

manner until a topmost attack threat is reached. 

(2) Evaluate canonical form: For considering OR combination of attacks, evaluate the canonical form (DNF 

– Disjunctive Normal Form) of the attack tree. In canonical form all the attack paths are related to an 

attack state with OR (disjunction) relations. Now, each attack path consists of several basic attack steps 

related with (S)AND ((sequential) conjunction). This means the attack path will be successful if and only 

if all the basic attack steps involved are successful. 

(3) Assign known values to AT: assign ordinal (e.g. “very low”  0 … “very high”  3) threat levels to BAs’, 

and quantitative severity levels to all higher nodes of the AT. 

(4) Compute all likelihoods: For the higher level and multi-level attacks represented (HAS) by the non-leave 

nodes of the AT, their likelihoods are computed as follows: 

o For OR nodes, the canonical form gives all attack paths to each state related with OR 

(disjunction) and we do the risk assessment for each attack paths individually. Note that the 

resulting risks are propagated separately to the next higher level. 

o For AND nodes, likelihood is the minimum of all direct lover level nodes. 

o For SAND nodes, compute likelihood as for AND nodes (i.e. do not consider the impact of 

sequential dependences on threat level). (The reachability score for following attacks can be 

taken as preceding attack, as this provides a gateway to the following attacks.) 

o Note: a OR-HAS will be compromised if any of the its attack paths is successful. 

(5) Evaluate risks (risk matrix): For each node, compute risk as product likelihood*impact. Represent the 

result in a matrix with all TS components on one axis, and all threats – basic as well as higher and multi 

– on the other. 
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