

IoT4CPS – Trustworthy IoT for CPS

FFG - ICT of the Future

Project No. 863129

Deliverable D4.3

Analytical Toolbox

The IoT4CPS Consortium:

AIT – Austrian Institute of Technology GmbH

AVL – AVL List GmbH

DUK – Donau-Universität Krems

IFAT – Infineon Technologies Austria AG

JKU – JK Universität Linz / Institute for Pervasive Computing

JR – Joanneum Research Forschungsgesellschaft mbH

NOKIA – Nokia Solutions and Networks Österreich GmbH

NXP – NXP Semiconductors Austria GmbH

SBA – SBA Research GmbH

SRFG – Salzburg Research Forschungsgesellschaft

SCCH – Software Competence Center Hagenberg GmbH

SAGÖ – Siemens AG Österreich

TTTech – TTTech Computertechnik AG

IAIK – TU Graz / Institute for Applied Information Processing and Communications

ITI – TU Graz / Institute for Technical Informatics

TUW – TU Wien / Institute of Computer Engineering

XNET – X-Net Services GmbH

© Copyright 2019, the Members of the IoT4CPS Consortium

For more information on this document or the IoT4CPS project, please contact:

Mario Drobics, AIT Austrian Institute of Technology, mario.drobics@ait.ac.at

mailto:mario.drobics@ait.ac.at

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 2 / 25

Document Control

Title: Analytical Toolbox

Type: public

Editor(s): Patrick Traxler

E-mail: patrick.traxler@scch.at

Author(s): Patrick Traxler, Arndt Bonitz, Faiq Khalid

Doc ID: D4.3

Amendment History

Version Date Author Description/Comments

V0.1 13.05.2019 Patrick Traxler Initial version: structure, introduction

V0.2 16.05.2019 Arndt Bonitz Anomaly Detection in Operating Systems

V0.3 23.05.2019 Patrick Traxler References

V0.4 30.05.2019 Faiq Khalid Anomaly detection in Hardware

V1.0 31.05.2019 Patrick Traxler Editing, executive summary

V1.01 03.06.2019 Branka Stojanovic, Heribert

Vallant

Document review

V1.02 14.06.2019 Patrick Traxler Integrating comments

V1.03 17.6.2019 Faiq Khalid Integrating the comments and adding more details

V1.031 01.07.2019 Heribert Vallant Fix some minor issues which were introduced during the

integration of comments

Legal Notices

The information in this document is subject to change without notice.

The Members of the IoT4CPS Consortium make no warranty of any kind with regard to this

document, including, but not limited to, the implied warranties of merchantability and fitness for a

particular purpose. The Members of the IoT4CPS Consortium shall not be held liable for errors

contained herein or direct, indirect, special, incidental or consequential damages in connection with

the furnishing, performance, or use of this material.

The IoT4CPS project is partially funded by the "ICT of the Future" Program of the FFG and the

BMVIT.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 3 / 25

Content

Abbreviations .. 4

Executive Summary .. 5

1. Introduction ... 6

1.1 Analytical Toolbox for Anomaly Detection .. 6

1.2 Relation to Use Cases .. 7

2. Anomaly Detection in Network Traffic .. 7

2.1 Performance Evaluation of Binary Classifiers ... 8

2.2 The NSL-KDD-1999 Dataset .. 9

2.2.1 Binary Classification on All Variables ... 9

2.2.2 Binary Classification on Subset of the Variables .. 10

2.2.3 Multi-Class Classification .. 10

2.3 The CIC-IDS-2017 Dataset .. 11

2.3.1 Data Preprocessing ... 11

2.3.2 Binary Classification of Brute Force Attack on Tuesday .. 12

2.3.3 Other Methods ... 12

2.3.4 Multi-Class Classification of Brute Force Attacks on Tuesday 13

2.4 Analytical Toolbox.. 13

2.5 Summary .. 14

3. Anomaly Detection in Operating Systems ... 15

3.1 Background .. 15

3.2 System Log Analysis: Automatic Event Correlation for Incident Detection (ÆCID) 15

3.3 Analytical Toolbox Integration .. 17

3.4 Summary .. 18

4. Anomaly Detection in Hardware ... 19

5. References ... 25

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 4 / 25

Abbreviations

ÆCID Automatic Event Correlation for Incident Detection

CPS Cyber-physical system

ICT Information and communications technology

IDS Intrusion Detection System

IoT Internet of Things

HIDS Host IDS

HT Hardware Trojans

MQ Message Queue

MQTT MQ Telemetry Transport

PSL Property Specification Language

SoC System on a Chip

3PIP 3rd Party Intellectual Property

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 5 / 25

Executive Summary

This deliverable describes the current progress on anomaly detection for IoT4CPS and its intended

implementation of the Analytical Toolbox. Results have been achieved by the IoT4CPS partners AIT,

SCCH and TU Vienna during this first phase of the project. AIT developed a path within the ÆCID

framework for future integration into the Analytical Toolbox and the IoT4CPS demonstrators. First

steps, the integration of a message queue into ÆCID, have been undertaken und successfully

tested. ÆCID stands for Automatic Event Correlation for Incident Detection and is an intelligent

cyber security tool that uses special mathematical calculations to distinguish abnormalities from

normal behavior. ÆCID is continuously developed by AIT. Whereas the work of AIT concerns mostly

the operating system level, SCCH worked on anomaly detection on the network communication

level. A first achieved insight is that decision tree learning seems to be particular well suited for

attack and intrusion detection problems at the network communication level. This work has been

carried out on public datasets for intrusion and attack (anomaly) detection. In addition, a Shiny app

has been developed to test first data visualization techniques for the Analytical Toolbox. The work of

AIT and SCCH is complemented by the TU Vienna which mostly concerns anomaly detection in

hardware.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 6 / 25

1. Introduction

1.1 Analytical Toolbox for Anomaly Detection

Observing complex cyber-physical systems (CPS) or even networks of complex cyber-physical

systems is a critical contemporary challenge for companies across Austria. The Internet of Things

(IoT) offers basic technologies for collecting large amounts of data from CPSs around the world.

Understanding and inferencing from this data is a core challenge for data analysis and knowledge

engineering. For the purpose of improving the security of networks of CPSs, statistical inferencing

and knowledge reasoning from these massive amounts of data becomes exceptionally challenging.

This is due to the malicious nature of attacks and intrusions. They are often not known to security

experts. Thus, defining patterns in data for algorithmic detection of attacks and intrusions is not

feasible. Even if researchers and security experts identify some of these patterns, the attackers will

move on to other or improved approaches and tools. It is thus clear that companies are seeking for

software tools to support them in their task to monitor and understand the risk and security threats

of their networks. Such networks may comprise thousands to millions of systems. The Analytical

Toolbox for Anomaly Detection aims at supporting companies in their task to keep their systems and

networks safe and secure.

Anomaly detection is a problem setting in machine learning that tries to identify atypical system

behaviour. It is similar to outlier detection in statistics. The general approach is to train models of

the typical system behaviour and then to identify deviations from it. These deviations are the

anomalies. It is of importance to note that this approach does not assume any knowledge about the

attacks, tools for attacking or about the attackers. In terms of machine learning, it is an

unsupervised approach (some kind of explorative data analysis.) We also note that besides training

the models, manual modelling of the typical system behaviour by experts may be viable.

The use cases of IoT4CPS suggests several improvements of general anomaly detection due to the

restriction to networks of cyber-physical systems. Such systems and networks have their own

characteristics. We distinguish between three levels of data sources for anomaly detection in the

IoT4CPS project: Data from hardware, from operating systems and from the network traffic. These

three levels of data sources are studied by the three project partners TUW, AIT, SCCH respectively.

• Network traffic (SCCH): The data source is mostly TCP/IP information. This includes the IP

addresses, TCP connections, amount of IP packets sent and so. For networks of CPS, this

network communication data may be very homogenous. For example, data is sent every day

at the same time from a CPS.

• Operating system (AIT): The data source is comprised mostly by system logs and

application events. This includes information about logins, executed programs, file system

operations and so on. Logs can be acquired from IoT or CPS devices, as well as from

backend servers used in the demonstrators.

• Hardware (TUW): The communication behaviour of particular hardware components

together with physical measurements at hardware level is the data pool for this type of

analysis. An example of data source is the power consumption of the device recorded by

some sensors.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 7 / 25

These three rather different types of data sources are the input for anomaly detection algorithms.

Anomaly detection algorithms output the description of an anomaly which are usually defined as

events. Events have a start time, end time and perhaps an associated value. For the purpose of

security monitoring, an estimation of the risk of the anomaly is preferable. In the practice of

monitoring tools, anomalies are often not directly presented to the user of the monitoring tool. The

reason is that anomalies may occur too frequently. Instead only the most critical or aggregated

anomalies are presented to the user as alarms. Alarms are associated with a text message

describing the incident and may need to be confirmed after notification. Another usage of anomaly

detection is to develop forensic tools for the purpose of identifying attacks and intrusions in

historical data. The Analytical Toolbox serves as a demonstrator for the applicability of anomaly

detection algorithms and methods in information security.

1.2 Relation to Business Needs and Use Cases

Anomaly detection as outlined above relates to the use cases automated driving (WP6) and smart

production (WP7). Requirements are the availability of data. A precise description of the data

models that are employed in the research can be found in the following sections.

Anomaly detection at all three levels (hardware, operating systems, network traffic) applies to the

business needs of

• AVL: IoT for the Connected Vehicle (see D2.2., Chapter 3.3)

• IFAT: Trustworthy radio connectivity solutions in smart production use-cases (see D2.2.,

Chapter 3.4)

• NXP: Integrity and Authenticity Check of Complex Systems (see D2.2., Chapter 3.5)

Anomaly detection in hardware applies also to TTTech: Secure and Safe Platform for Automated

Driving (see D2.2, Chapter 3.7)

Anomaly detection in software (operating systems, network traffic) applies to the use case of X-Net:

Security by Isolation / Production of Storage Media for IoT devices (see D2.2, Chapter 3.8)

2. Anomaly Detection in Network Traffic

In this phase of the project we considered two public datasets for anomaly (attack and intrusion)

detection [1-10] with the following goals for research and experimental development:

• NSL-KDD-1999 [9]: Reproduce the known experimental results on this dataset from the last

two decades.

• CIC-IDS-2017 [6,8]: Produce novel results for this dataset. This dataset, that describes

modern network communications much more realistic than NSL-KDD-1999, has not been

considered in detail so far.

• Analytical Toolbox: Develop a user interface for network traffic analysis. As usable security

is also a focus of IoT4CPS this should serve as basis for further discussions on how the

Analytical Toolbox may be used.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 8 / 25

In this phase of the project, we approach anomaly detection by binary classification and supervised

learning in general. This means that we assume to have labels for the presence of an attack or

intrusion as it is the case with the above mentioned data sets.

2.1 Performance Evaluation of Binary Classifiers

In this section we will have a look on the different metrics and statistics which we will use for model

evaluation. The overall goal in binary classification for anomaly detection is to achieve a maximum

detection rate and accuracy with a minimum false alarm rate. For conducting our experiments, we

implemented the function evaluation(…) with the following input arguments:

• model_fitted: estimated model which we want to evaluate

• new_data: new data on which the model should be evaluated

• true_labels: true labels of the new data

• threshold: threshold for models returning probabilities (default value is 0.5)

• print_predicted_labels: must be set to TRUE if the function should return also the

predicted labels for the new data, default setting for this argument is FALSE

• type: type of the response for the function predict(), this argument is empty by default

• auc: must be set to TRUE if the function should return AUC (area under curve) value, default

value is FALSE

• model_is_labels: must be set to TRUE if the first argument model_fitted is already in

form of predicted labels, in this case argument new_data should be empty

The output of this function is a list of values obtained by various evaluation techniques for binary

classification:

• accuracy: proportion of correctly classified samples among all samples, i.e. accuracy = (TP

+ TN)/(TP + TN + FP + FN)

• TPR = true positive rate (aka sensitivity or detection rate): proportion of actual positives that

are correctly identified as such, i.e. TPR = TP/(TP + FN)

• TNR = true negative rate (aka specificity): proportion of actual negatives that are correctly

identified as such, i.e. TNR = TN/(TN + FP)

• balanced_accuracy = balanced accuracy: (TPR + TNR)/2

• FAR = false alarm rate (aka false positive rate): proportion of false positives among all true

negatives, FAR = 1 - TNR

• precision: proportion of predicted positives from predicted as positive, i.e. precision =

TP/(TP + FP)

• conf_matrix_freq: confusion matrix with frequencies

• conf_matrix_perc: confusion matrix with percentages

• K = Cohen's kappa: measures the agreement between two raters who each classify N items

into C mutually exclusive categories. If the p-value in the kappa test is lower than

predefined level (e.g. 0.05) then we reject null hypothesis and conclude that the appraiser

agreement is significantly different from what would be achieved by chance. This is returned

only if the number of different values of predicted labels is equal to number of different

values of true labels.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 9 / 25

• predicted_labels: labels predicted by given model for the given new data. Predicted

labels are returned only when print_predicted_labels is specified as TRUE in the

input.

2.2 The NSL-KDD-1999 Dataset

The data set from the KDD Cup '99 [9] is widely used for evaluation of models for attack and

intrusion detection. The data set consists of 41 features and each observation is labeled as either

normal (no attack) or with the type of the attack. There are four main categories for the simulated

attacks:

• DoS (Denial of Service attack): denial-of-service, e.g. syn flood

• U2R (User to Root attack): unauthorized access to local super user (root) privileges, e.g.,

various buffer overflow attacks

• R2L (Remote to Local attack): unauthorized access from a remote machine, e.g. guessing

password

• Probe (Probing attack): surveillance and other probing, e.g., port scanning

Since the test data is not from the same probability distribution as the train data, the test data

consists not only of specific attack types which are not included in train data, but has the new values

of the explanatory variables (features) as well. This makes the task more realistic as there are also

novelties in test data which needs to be handled.

The KDD Cup '99 [9] data set is rather old and has some deficiencies. The main problem is that the

data set consists of repeating observations, thus the classifier constructed by using such a data set

would be biased towards more frequent observations. To elude this problem, we used the data set

NSL-KDD [9] consisting of unique observations from original KDD Cup '99 [9] data set. This means

that the redundant observations are removed and not used in the analysis.

2.2.1 Binary Classification on All Variables

This section presents results from various models, which were used for binary classification of NSL-

KDD [9] dataset. The results presented are obtained using all given variables, while the next section

presents results using same methods on a subset of the variables - The variables which have near

zero variance and which have too high correlation with other variables are removed.

Some of the models required model matrix or one-hot encoded variables, which means that we had

to add those values of categorical variables which were only in test data (and not in train data). This

is a critical issue that will have to be solved later on in the final version of the tool box.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 10 / 25

Figure 1 – Results

Additionally, we trained some neural networks with 3 and 5 hidden layers, with different activation

functions and different number of neurons in the hidden layers, but accuracy was every time around

77.5% on the test data. Number of epochs was chosen from the graph of history, not to overfit nor

to underfit the model. We used binary cross entropy as a loss function and the optimizer was

stochastic gradient descent. There might be a problem with new values of categorical variables in

test data, this is taking accuracy lower than where it could be if there were no new categories.

For Keras nnet, we configured 3 hidden layers with 100, 80 and 60 neurons with ReLu activation

function. The input layer consists of 120 neurons (119 parameters + bias) and output layer consists

of only 1 neuron with a sigmoid activation function. The neural network was first trained with 100

epochs and it was validating itself with validation split 0.3. For the purpose of training the batch size

was chosen to be 50. This setting gave us an accuracy of 80.6%. Training the model again with the

whole training set (no validation split) and with only 40 epochs and the same batch size we get an

accuracy on test data of 79.13%. For the purpose of training and testing the standardized data was

used.

2.2.2 Binary Classification on a Subset of the Variables

For the next part of experiment, the variables with near zero variance were removed from the test

and train datasets. To test if some variable has near zero variance or not, we used the function

nearZeroVariance() from the R package Caret. We removed 22 variables.

Figure 2 – Results (TPR = True Positive Rate, FAR = False Alarm Rate)

As can be noted, the results are almost the same as in the previous experiment, where all variables

were used for training models, but the complexity is much lower. Lower training time and better

interpretability, together with comparable performance, lead to conclusion that pre-selection of

variables based on variance is worth considering.

2.2.3 Multi-Class Classification

In this part of our experiment we tested multi-class classification methods on dataset with four

malicious (attack) data types and one non-malicious data type. Four new columns were created for

train and test data. Each column is binary and indicates whether a given observation is a specific

attack type (DOS, U2R, R2L, and Probe). For example, the binary vector 0110 means that an attack

of type U2R and R2L happened. If an observation is not an attack, all 4 values for the given

observation are zero.

With this encoding accuracy is good for DOS attacks, all others have a too small amount of

observations. New data sets are very imbalanced and thus some classifiers, as for example neural

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 11 / 25

network from the package nnet, collapsed and set all predicted values to 0. This gave the best

accuracy, but it is very poor predictor.

A neural network trained with the Keras package achieved 78% of accuracy.

2.3 The CIC-IDS-2017 Dataset

For the statistical analysis of intrusion detection, we also used the publicly available dataset CIC-

IDS-2017 [6,8]. This dataset consists of network data in the duration of 5 working days. On Monday,

there was only normal (benign) network flow with no attacks. On Tuesday there are 2 brute force

attacks: FTP-Patator and SSH-Patator. Both of them lasted 1 hour. On Wednesday there were some

Denial-of-Service attacks in the morning and one Heartbleed attack in the afternoon. On Thursday

the web attacks occurred. On Friday there were some infiltration attacks, as well as some other

attacks. Some of the samples which had no label were excluded. Data set is not balanced, there is

approximately 80% of benign network traffic and only 20% of malicious network traffic. This is not

very good for modelling, but is closer to reality than balanced.

2.3.1 Data Preprocessing

We prepared our data for further analysis as described in the article [1]:

• Remove duplicate column Fwd Header Length

• Remove redundant duplicate samples

• Remove the samples with missing label

• Set all missing values and negative values to 0

• Replace infinite values by column mean

• Remove features with zero variance

• Change time formatting

• Add column hms for with format hours:minutes:seconds

• Add column binary_attack if attack is absent or present

We removed features with zero variance: Bwd PSH Flags, Fwd URG Flags, Bwd URG

Flags, CWE Flag Count, Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk

Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk and Bwd Avg Bulk Rate.

Some methods used in our experiment require rescaled data as they are not scale invariant. For this

purpose, we scaled our features by a min-max transformation. We replaced a value X by X’ = (X –

Xmin) / (Xmax – Xmin) where Xmax, Xmin are the largest and smallest observed value of X. We also used a

z-transform, i.e. we replace X by X' = (X – mean(X)) / sd(X). Transformation involving subtraction of

mean is problematic in our case since all of the variables are originally positive.

For the purpose of dimensionality reduction, we used principal component analysis. This method

gives us orthogonal principal components, where each of the components is a linear combination of

our features. Principal components are constructed in a way such that the first principal component

carries the biggest proportion of variance in the data, the second principal component is orthogonal

to the first one and carries the second biggest proportion of the variance in the data, etc.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 12 / 25

2.3.2 Binary Classification of Brute Force Attack on Tuesday

Brute force attack (password guessing) occurs on Tuesday. The attack is executed with the tools

SSH-Patator and FTP-Patator. Both of these attacks last 1 hour. For the purpose of training, we took

the first half an hour of both attacks and put them into the Monday training data. Monday was all

normal (benign) activity before, now we will train the brute force attacks on it with these two half

hours of FTP- and SSH-Patator attacks. Afterwards we used the remaining data of Tuesday for

testing of the model. We trained a binary model without timestamps, i.e. with labels of attack/no

attack only.

For the purpose of binary classification on the above described dataset we used (non-)parametric

methods: Classification trees (R function rpart) and an ensemble method of classification trees

called Random Forest (R function randomForest). We tested a parametric method for binary

classification, namely logistic regression (R function glm). We used these methods on the original

scale (not transformed) and used all of the features.

Additionally, we have transformed the data by min-max transformation and reduced the dimensions

by PCA. We have used just some of the principal components and inspected the performance of

logistic regression. We have used the data transformed by min-max transformation also to train a

neural network with 3 hidden layers with ReLU activation functions and learning rate 0.01 and

momentum term 0.5.

All the results in table are in percentages. K is the kappa sample estimate from kappa test done by

function kappa.test.

Figure 3 – Results

2.3.3 Other Methods

Logistic regression in both cases (original data and first 30 principal components) did not converge

and gave warning that the fitted probabilities numerically 0 or 1 occurred. We have used the model

anyway, but we have to keep this warning in mind when comparing the results to other classifiers.

One class support vector machine (scaled data were used) was so slow, that it did not finish

computation after a day, so by now we do not have any results. We have tried it only on parts of the

data (to have faster classification), but the results were not better than the ones from classification

tree described in the beginning of this section. Balanced accuracy was only 59%. This might be

misleading as we only have randomly chosen part of the data and there might be too small amount

of attacks in it.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 13 / 25

Nonparametric k-nearest neighbors did not finish computation after a day as well, so we have no

results by now. It is a computationally demanding method and it will presumable not give

significantly better result than for example classification tree, which was quite fast.

2.3.4 Multi-Class Classification of Brute Force Attacks on Tuesday

The next part of experiment included testing of multi-class classification methods on the CIC-IDS-

2017 dataset. This experiment utilizes the same classifiers as in binary classification experiment,

but with 3 different classes: normal data (no-attack), SSH-Patator attack and FTP-Patator attack.

The same training and testing subsets as in binary classification were used, with the data

transformed by a min-max transformation. The reason for trying to classify each of the two attacks

separately is the assumption that they differ in some variables and that this circumstance might

have led to such the above result of neural net in binary classification. The results are however

almost the same as when we did the binary prediction. The accuracy is 99.07%, balanced accuracy

is 74.84%, the TPR is 49.68%, the TNR is 99.99% and the precision is 99.90%.

2.4 Analytical Toolbox

We implemented a so called Shiny-App for visualizing the previous results and allowing for manual

(visual) data analysis. Shiny-Apps is a technology for rapid prototyping of applications and based on

the statistical programming language R. For demonstration purposes we have a look at the data

from Tuesday of the CIC-IDS-2017 [6,8] dataset. On Tuesday there are 2 attacks: FTP-Patator in

the morning and SSH-Patator in the afternoon. Both these attacks are coming from a computer with

IP 172.16.0.1. This computer produced also benign traffic flow in the afternoon.

Next, we give a brief description of the functionality of the Shiny-App.

Inputs:

• User can choose which day he wants to analyze. Several days can be chosen at once.

• User can choose which time range he wants to analyze. For the chosen time range both

graphs will be adjusted.

• User can choose the type of the first (upper) graph to be shown as density or histogram.

• User can choose the variable (feature) to plot in the second graph.

• User can choose a % of observations to use for the plotting (for faster graphics plotting).

• User can choose Source IP and Destination IP of all the flows which he wants to analyze.

Both of these options are multiple choice.

• After choosing all desired Source IPs and Destination IPs, one needs to submit the selection

to obtain a graph. Shiny will plot all the flows between selected IPs.

Outputs:

• In the first (upper) graph the distribution of labels of the selected observations is shown.

• In the second (lower) graph the line plot of the chosen variable for the chosen Source IP(s)

is shown.

• Both graphs can be zoomed by choosing smaller time interval.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 14 / 25

Figure 4 – Screenshot of Analytical Toolbox for Anomaly Detection in Network Traffic

Especially in the above figure, we can see the density of samples from the only malign Source IP

172.16.0.1 on Tuesday, with all its flows (all destination IPs are selected). We can see that the

variable mean length of backward packets is much higher for SSH-Patator attack (blue) than for

FTP-Patator attack (green). There are also some benign observations.

2.5 Summary

To summarize this phase of the project, we conclude that decision tree learning seems to be the

best approach for attack and intrusion detection problems (for the given datasets). Random forest

learning was a bit slower than the other learning algorithms. Single tree learning also performed

good and was quite fast.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 15 / 25

3. Anomaly Detection in Operating Systems

3.1 Background

In today’s ICT landscape, systems become increasingly interconnected and thus more and more

vulnerable to cyber security threats. Especially with the emergence of IoT, the attack surface

towards malicious attacks is tremendously increased. Traditional approaches to mitigate these

threats with intrusion detection systems (IDS), namely signature-based approaches, i.e., black-

listing methods, might not be adequate in this new world of interconnected systems of systems,

which are often poorly maintained and unmanaged. For example, sophisticated anomaly-based

detection mechanisms, in addition to these established systems, can help to mitigate the

exploitation of zero-day vulnerabilities, which are hardly detectable by blacklisting-approaches.

Furthermore, once the indicators of compromise are widely distributed, attackers can easily

circumvent detection of malware. Here, often a simple re-compile with small modifications is

enough to put IDS and anti-malware system off track. And the biggest threat, the use of social

engineering as an initial intrusion vector with no technical vulnerabilities exploited, gives no

indicators that can appropriately described for a blacklist malicious.

3.2 System Log Analysis: Automatic Event Correlation for Incident Detection (ÆCID)

In addition to the anomaly detection approach described in chapter 0 that analyses network traffic

data, the system log analysis focuses on processing log data from operating systems and

applications. The Automatic Event Correlation for Incident Detection (ÆCID) software system,

which has been previously developed by AIT1, is used as a basis for system log analysis tools of the

Analytical Toolbox for Anomaly Detection for IoT4CPS. Since ÆCID uses self-learning and white-

listing approaches, it is ideal to process logs produced by legacy systems and by appliances with

small market shares (like those largely employed in CPS). Furthermore, due to its decentralized

architecture with a lightweight component, that can be used on systems with only minimal

processing power and memory resources, ÆCID is ideal in an IoT environment.

1 Wurzenberger, M., Skopik, F., Settanni, G., & Fiedler, R. (2018). AECID: A Self-learning Anomaly Detection

Approach based on Light-weight Log Parser Models. In ICISSP (pp. 386-397).

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 16 / 25

Figure 5 ÆCID architecture

Figure 5 depicts the system architecture of ÆCID, consisting of the AMiner and ÆCID Central. As

mentioned before, ÆCID is designed to allow the deployment in highly distributed environments.

Due to its lightweight implementation, an AMiner instance can be installed on any node of the

network. The ÆCID Central, the component responsible of controlling and coordinating all the

deployed AMiner instances, can be installed on a host with more resources.

The AMiner operates similarly to a Host IDS sensor and is usually installed on host and network

nodes that needs to be monitored. If available, the AMiner can also be deployed on a centralized

logging storage which collects the log data generated by the monitored nodes. Each AMiner

interprets the log messages generated or collected on a host following a specific model, called

parser model2. This model is generated ad-hoc to represent the different events being logged on

that node. A custom rule set identifies the events that are considered legitimate on that system. The

parser model in combination with the rule set, describe the expected system behavior of the

monitored node. Every log message violating this behavioral model represents an anomaly. In case

of an anomaly, the AMiner instance can generate a detailed record of parsed and unparsed lines,

alerts and triggered alarms. These reports then can be sent to the ÆCID Central or through

additional interfaces to system administrators or other entities.

ÆCID Central provides more advanced features compared to the AMiner, which is only used to

perform lightweight operations such as parsing incoming log messages and comparing them against

a set of pre-defined rules. ÆCID Central can learn the normal system behavior of every monitored

system by analyzing the logs received from each AMiner instance and generating a tailored parser

model and a specific set of rules in a semi-automatic fashion based on previously received log data.

2 Wurzenberger, M., Landauer, M., Skopik, F., & Kastner, W. AECID-PG: A Tree-Based Log Parser Generator

To Enable Log Analysis.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 17 / 25

Both then can then be used to configure the AMiner instances, in order to detect logged abnormal

activities. Additionally, ÆCID Central features a correlation engine which allows analyzing and

associating events observed by different AMiner instances, with the purpose of white-listing events

generated by complex processes involving diverse network nodes. A Control Interface allows

system administrators to communicate with ÆCID Central for its configuration and setting up the

individual deployed AMiner instances.

3.3 Analytical Toolbox Integration

In order to integrate ÆCID into the IoT4CPS Analytical Toolbox, and thus make it available for the

demonstrators, some additional steps are necessary. First, a method leveraging the ÆCID

components needs to be established, which can be easily integrated without impacting the

architecture of the demonstrators. Second, a parser model and a specific set of rules for relevant

IoT4CPS components needs to be developed.

Figure 6 ÆCID integration into IoT4CPS

In order to tackle the first issue, ÆCID needs to be extended with a secure and reliable

standardized interface for accessing logs messages of external systems. The choice fell on the use

of a message queue, since they allow for asynchronous communication which is ideal for IoT / CPS

environments where a constant internet connection of all devices cannot be guaranteed. Message

queue provide a temporary message storage until the recipient retrieves them. Apache Kafka3 has

been selected for a first proof-of-concept implementation for message queue support. Apache

Kafka is an open-source streaming platform and can be used to publish and subscribe to streams of

records. It also allows for storing streams of records in a fault-tolerant durable way. Furthermore,

solutions for connecting Apache Kafka to a MQTT broker exist.

Figure 6 shows a path of how the integration to the Analytical Toolbox can be accomplished. ÆCID

Central can be deployed to an “external” machine, and only exposed through the Apache Kafka

Broker and the AMiner Interfaces. In the IoT4CPS demonstrators, three possibilities exist to use the

log analysis capabilities of ÆCID:

3 https://kafka.apache.org/

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 18 / 25

1) Monitored Host #1 shows the standard ÆCID approach, using an AMiner without any

special adjustments. Here, only the parser model and a specific set of rules must be

deployed to the AMiner instance.

2) Monitored Host #2 shows the use of a simple log forwarder, which uses MQTT for pushing

log files to a MQTT broker. This component will have to be newly developed for IoT4CPS.

3) Monitored Host #3 shows the extended ÆCID approach, featuring an AMiner connected

though a MQ interface to the ÆCID Central.

3.4 Summary

To summarize this phase of the project, we have developed a path using the ÆCID framework within

the Analytical Toolbox and the IoT4CPS Demonstrators. First steps, the integration of a message

queue into ÆCID, have already been undertaken und successfully tested.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 19 / 25

4. Hardware Anomaly Detection

Increasing trend of shifting from intelligent edge to intelligent mesh network cyber-physical

systems leads to exponential increase in the usage of commercial-off-the-shelf components. The

trustworthiness of the these commercial-off-the-shelf components leads to several security threats,

especially, the communication network between these components is the most vulnerable toward

security attacks at hardware level. Typically, hardware attacks are based on malicious alteration of

the hardware design that can alter the functionality, leaks the information or perform the denial-of-

service attack (either by inserting the kill-switch [15] or getting the control of controllers [16]).

Several techniques have been proposed to counter these attacks but most of the them are based on

the timing, power, current or electromagnetic signals-based golden signatures. However, in the case

of commercial-off-the-shelf components, it is nearly impossible to extract the golden signatures. To

address this challenge, several analysis techniques have been proposed to analyze the commercial-

off-the-shelf components to estimate the golden model under the assumptions that malicious

circuitry is not activated during the estimation. This raises the following research challenges: (1)

how to ensure the accuracy of the golden circuits? and (2) coverage of the extracted golden circuits.

To address these limitations, run-time detection techniques have been proposed, however, most of

these techniques are based on the side-channel analysis that require precise calibrations to

incorporate the process variations. Moreover, these techniques also premise that triggering of

payload results in a substantially higher current flow.

4.1 Statistical Modelling of Communication Network

To address these limitations, we proposed to explore the communication behaviour of because, in

real-world scenarios, modules are connected via communication channels and therefore most of the

intrusions can have a small or big impact on the communication behaviour. To verify the hypothesis,

we analyzed the communication behaviour of an MC8051 microcontroller for the Gaussian and

exponential input data distributions, as shown in Fig. 7, and highlighted the following research

challenges:

• How to model the communication behaviuor for run-time monitoring with minimum

overhead?

• How to exploit the abnormalities in communication behaviuor to design a runtime

monitoring framework for HT4 detection

4 Malicious hardware intrusions into the integrated circuits, known as Hardware Trojans (HT), can lead to

several unwanted payloads, i.e., information leakage, change in the timing characteristics, malfunctioning and

denial-of-service (DoS). The effects can be catastrophic, such as system failure and leakage of secret encryption

keys (e.g., failure of ice-detection module in the P8A Poseidon [12]).

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 20 / 25

Figure 7: The effects of trust-hub Trojan benchmarks [14] (i.e., MC8051-T200, T300, T400, T500, T600, T700

and T800) on the communication behaviour of MC8051 for Gaussian and Exponential input data

distributions [13].

To address the above-mentioned challenges, we propose a runtime anomaly detection methodology

based on the traffic modelling of communication in integrated circuits. Using an appropriate threat

model is one of the foremost steps in developing any methodology for detecting intrusions in the

domain of hardware security. Our approach was published in the [13] we assume that 3PIP vendors

are not trusted and the SoC integration is performed in a trusted facility. The proposed methodology

consists of two major steps, as shown in Fig. 8:

Figure 8: SIMCom: Statistical sniffing of inter-module communication for runtime HT detection

4.1.1 Extract the statistical communication traffic model behaviour

The communication traffic modelling is done under the premise that no Trojans get activated during

the pre-market test phase. The statistical communication behaviour of an SoC can be obtained by

utilizing the following steps:

• The input packets are generated with respect to the standard spatial injection distribution,

e.g., Gaussian distribution.

• Next, Hurst exponent, at the pre-market test stage, is computed for each communication

channel.

• Then, the extracted traffic model is translated to its corresponding PSL assertions.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 21 / 25

• Finally, the traffic monitoring unit for run-time HT detection is designed. This is achieved by

counting the packets for a specific duration and computing the Hurst exponent at run-time.

4.1.2 Run-time Hardware Trojan Detection

The next step of the proposed methodology is to monitor the run-time traffic of an SoC and to

compare it with the extracted pre-market test stage behaviour. This step is composed of the

following sub-steps:

• First, the Hurst exponent (H)5, hop probability distribution (P)6 and standard deviation of

input injection distribution (σ) parameters are computed for each communication channel

during runtime.

• Then, the extracted statistical communication behaviour is verified using the embedded

property specification language (PSL) assertions7.

4.2 Experimental Analysis

To illustrate the effectiveness of the proposed technique, we implement a network-on-chip (NoC)

consists of MC8051 microcontroller that are communicating with each other and UART module via

AMB 2.0 bus, as shown in Fig. 9. The main motivation of choosing the MC8051 microcontroller as

our case study is the availability of its open-source Trojan benchmarks at the trusthub.org8. We first

obtained the communication behaviour of the un-intruded MC8051 while communicating with UART

modules. We used this behaviour to obtain the corresponding PSL assertions and embed them into

the SoC. The key assumption of this analysis is that “Though all instances of the MC8051 can have

the Trojan but Trojan in only one IP module is triggered at a particular time considering a unique

sequence happening at run time with very low probability of triggering (almost zero).

5 Hurst Exponent is defined as: 𝐻 = log10 [
𝐸(

𝑅(𝑛)

𝑆(𝑛)
)

𝑎 × 𝑛
], where, “R(n)” and “S(n)” are the magnitude range and the

average magnitude of the time series, “n” is the number of observations and “a” a positive constant.

6 The hop probability distribution is defined as 𝑃ℎ>𝑑 = (1 − 𝑝)𝑠(𝑑), where “s” is the source module, “s(d)” is the

number of modules from source with hop distance “d” and “p” is the acceptance probability which is defined as:

𝑝 = 1
𝑟 − 1⁄ , “r” is the number of receiving modules.

7 For example, the property, “Hurst exponent a communication channel should be equal to value of the Hurst

exponent a communication channel during design stage,” is translated into PSL as follows:

PSL 1: assert always (H[1:100000] == H_design);

Similarly, for other parameters, we define the following properties:

PSL 2: assert always (sigma[1:100000] == sigma_design);

PSL 3: assert always (P[1:100000] <= Pmax && P[1:100000] >= Pmin)

8 Hardware Trojan benchmark available at https://www.trust-hub.org/.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 22 / 25

Figure 9: MC8051-based UART Communication Network (blue and red text represent the un-intruded and

intruded modules, respectively).

For the comprehensive analysis of SIMCom, we perform the dynamic and average analysis of the

statistical communication behaviour over the 100,000 clock cycles, as shown in Fig. 10 and 11.

By analyzing the dynamic communication behaviour (Fig. 10), we made the following key

observations:

1. Few of the Trojan impact on Hurst Exponent is dependent on the input data distribution (i.e.,

Gaussian or Exponential).

2. Hop distribution is useful for such Trojan benchmarks that temporarily or permanently block

the communication.

3. All the M8051 Trojan benchmarks have the significant impact on standard deviation of

injection distribution of communication data.

By analyzing the average behaviour over 100,000 clock cycles, we made the following key

observations:

1. The average behaviour shows that, on the average, all the implemented Trojan benchmarks

have a significant impact on Hurst exponent irrespective of the input data distributions, as

shown in Fig. 11.

2. In the average-case analysis, all the implemented Trojans have no impact on the probability

of hop distribution, except for the MC8051-T300, because it performs the denial-of-service

attack and blocks the communication. Trojan benchmark.

3. Similarly, all the implemented Trojans have a significant impact on the standard deviation of

the distribution of the injecting traffic (traffic injected by a module in the communication

channel).

Figure 10: Runtime Impact Analysis of implemented HTs (i.e., MC8051-T200, T300, T400, T500, T600, T700,

T800) on the statistical model (Hurst exponent, hop) of the implemented case study for 100,000 clock

cycles

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 23 / 25

Figure 11: Average Impact Analysis of benchmark Trojans (i.e., MC8051-T200, T300, T400, T500, T600,

T700, T800) statistical model of 8051 based UART communication network for 100,000 clock cycles. Note:

T000 represents the pre-market test stage communication behavior of the MC8051 based experimental

case study with no Trojans inserted. T300 blocks the communication, therefore, it always generates the

“0” value for all the statistical parameters except the Hop probability, as shown by the labels A, C, D and

F. Hop probability parameter is useful to detect such Trojans that blocks the communication channel.

4.3 Summary

In summary, the proposed statistical model can identify most of the anomalies in communication

behaviour due to hardware Trojans. Moreover, unlike the state-of-the-art techniques, it does not

require any wrappers and hidden control signals, like the LOCK signal. Moreover, SIMCom can be

implemented on any wired or wireless communication system but it possesses the hardware

overhead of the online verification and computational modules for estimating the Hurst exponent,

hope distribution and standard deviation of the traffic injected by a module in the communication

channel.

4.4 Future Work

The SIMCom concept can be extended to Vehicular Ad-Hoc Network, which is emerging as the

prominent communication framework for autonomous vehicles. However, due to complex, dynamic

and heterogenous communication network topologies, protocols and devices, these networks are

vulnerable to several security threats, i.e., information leakage, denial-of-service. In future, we are

planning to leverage the statistical modelling of communication pattern (i.e., Hurst Exponent) to

generate a single parameter-based unique signature for a particular type of communicating

command. Then, these signatures are compared with the run-time communication pattern

modelling to identify the anomalous communication behaviour. For illustration, we are planning to

implement the proposed approach on the VANET communicating with 802.11p for several datasets,

i.e., RioBusses-v2018, VANETjamming2018 and VANETjamming2014 [11].

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 24 / 25

5. Overall Summary

To summarize this phase of the project, we made progress on anomaly detection within IoT4CPS.

Software is under development for the future application of anomaly detection on real-world data.

This includes the

• Continuous development of the ÆCID framework within the Analytical Toolbox. In

particular, the integration of a message queue into ÆCID has been implemented und

successfully tested.

• A data visualization tool that helps in analysing network traffic for detecting attacks and

intrusions.

• A statistical model that can identify most of the anomalies in communication behaviour due

to hardware Trojans both for wired or wireless communication systems.

In addition, there is experimental software that applies machine learning to public benchmarks for

anomaly detection given network traffic data. Our main scientific insight is that decision tree

learning seems to be the best approach for attack and intrusion detection problems. The intuitive

reason for this is that decision tree learning performs well on event and count data.

IoT4CPS – 863129 D4.3 Analytical Toolbox

 PUBLIC

Version V1.0 Page 25 / 25

6. References

[1] Abdulhammed, Razan, “Features Dimensionality Reduction Approaches for Machine

Learning Based Network Intrusion Detection.” Electronics, vol. 8, no. 3, Mar. 2019, article nr.

322.

[2] Almseidin, Mohammad, “Evaluation of Machine Learning Algorithms for Intrusion Detection

System.” Proc. of the IEEE 15th International Symposium on Intelligent Systems and

Informatics (SISY), 2017, pp. 277–282.

[3] Chen, Wun-Hwa, “Application of SVM and ANN for Intrusion Detection.” Computers &

Operations Research, vol. 32, no. 10, Oct. 2005, pp. 2617–2634.

[4] Collins, Michael. Network Security through Data Analysis: From Data to Action. Second

edition, O’Reilly Media, 2017.

[5] Laskov, Pavel, “Learning Intrusion Detection: Supervised or Unsupervised?” Proc. of the

Image Analysis and Processing (ICIAP), 2005, pp. 50–57.

[6] Panigrahi, Ranjit and Samarjeet Borah. “A Detailed Analysis of CICIDS2017 Dataset for

Designing Intrusion Detection Systems.” International Journal of Engineering & Technology,

vol. 7, no. 3.24, 2018, pp. 479–482.

[7] Sabhnani, Maheshkumar, and Gursel Serpen. “Why Machine Learning Algorithms Fail in

Misuse Detection on KDD Intrusion Detection Data Set.” Intelligent Data Analysis, vol. 8, no.

4, Oct. 2004, pp. 403–415.

[8] Sharafaldin, Iman, “Toward Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization:” Proc. of the 4th International Conference on Information Systems

Security and Privacy (SCITEPRESS), 2018, pp. 108–116.

[9] Tavallaee, M., “A Detailed Analysis of the KDD CUP 99 Data Set.” Proc. of the IEEE

Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp.

1–6.

[10] Wang, Yun. Statistical Techniques for Network Security: Modern Statistically Based

Intrusion Detection and Protection. Information Science Reference, 2009.

[11] A Community Resource for Archiving Wireless Data at Dartmouth. Website crawdad.org/,

May 31.

[12] J. Villasenor and M. Tehranipoor, “The hidden dangers of chop-shop electronics: Clever

counterfeiters sell old components as new threatening both military and commercial

systems,” IEEE Spectrum (cover story), 2013.

[13] Khalid, F., Hasan, S. R., Hasan, O., Awwad, F., & Shafique, M. SIMCom: Statistical Sniffing of

Inter-Module Communications for Run-time Hardware Trojan Detection. arXiv preprint

arXiv:1901.07299.

[14] M. Tehranipoor and H. Salamani, “trust-HUB,” 2016. [Online]. Available: https://www.trust-

hub.org/

[15] Adee, Sally. "The hunt for the kill switch." iEEE SpEctrum 45.5 (2008): 34-39.

[16] Zhao, Yang, et al. "Memory Trojan Attack on Neural Network Accelerators." 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019.

