IOTLCPS)

Trustworthy loT for CPS

l0T4ACPS — Trustworthy 10T for CPS

FFG - ICT of the Future
Project No. 863129

Deliverable D5.5.2
Lifecycle Data Management Prototype 11

The 10T4CPS Consortium:

AIT — Austrian Institute of Technology GmbH

AVL — AVL List GmbH

DUK — Donau-Universitat Krems

IFAT — Infineon Technologies Austria AG

JKU = JK Universitat Linz / Institute for Pervasive Computing
JR —Joanneum Research Forschungsgesellschaft mbH
NOKIA — Nokia Solutions and Networks Osterreich GmbH
NXP — NXP Semiconductors Austria GmbH

SBA — SBA Research GmbH

SRFG — Salzburg Research Forschungsgesellschaft

SCCH — Software Competence Center Hagenberg GmbH
SAGO - Siemens AG Osterreich

TTTech — TTTech Computertechnik AG

IAIK — TU Graz / Institute for Applied Information Processing and Communications
ITI = TU Graz / Institute for Technical Informatics

TUW — TU Wien / Institute of Computer Engineering

XNET — X-Net Services GmbH

© Copyright 2019, the Members of the 10T4CPS Consortium

For more information on this document or the loT4CPS project, please contact:
Mario Drobics, AIT Austrian Institute of Technology, mario.drobics@ait.ac.at

mailto:mario.drobics@ait.ac.at

loT4CPS — 863129

PUBLIC

D5.5.2 Lifecycle Data Management Prototype Il

Document Control

Title:
Type:
Editor(s):
E-mail:
Author(s):
Doc ID:

Amendment History

Lifecycle Data Management Prototype

Public

Felix Strohmeier (SRFG)
felix.strohmeier@salzburgresearch.at
Felix Strohmeier (SRFG), Christoph Schranz (SRFG), Violeta Damjanovic-Behrendt (SRFG)

D5.5.2

Version Date Author Description/Comments

V0.1 17.10.2019 Felix Strohmeier Initial version prepared

V0.2 20.11.2019 Felix Strohmeier, Christoph Schranz | Draft for project-internal QA

V0.3 27.11.2019 Felix Strohmeier Minor updates in Appendix A

V0.4 02.12.2019 Arndt Bonitz Integrated Review Comments from AIT
V0.5 03.12.2019 Heribert Vallant Integrated Review Comments from JR
V1.0 12.12.2019 Felix Strohmeier Final Version for Publication

Legal Notices
The information in this document is subject to change without notice.

The Members of the 10TACPS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The

Members of the 10T4CPS Consortium shall not be held liable for errors contained herein or direct, indirect,

special, incidental or consequential damages in connection with the furnishing, performance, or use of this

material.

The 1oT4CPS project is partially funded by the "ICT of the Future" Program of the FFG and the BMVIT.

FFG

Forschung wirkt.

"= Federal Ministry
Republic of Austria
Transport, Innovation
and Technology

Version V1.0

Page 2 /27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il

PUBLIC

Content
1Y o] o TN = A Te] o T T OO O OO ROTO PRSP PP PRTOPPPROT 4
EXECUTIVE SUMIMAIY ..ottt e s bt e e e b bt e e s ba e e e ss bt e s e s b e e e sensne e e snneeeesnaeesennns 5
O (014 oY [0 4 o] o IE U TP T T PP PSP P PP PUTRPRPPPPOP 6
2. Architecture Overview Of the Prototype.. ...ttt st 6
2.1 Digital TWin Messaging and Data layer......c.uuiiecuiieeiiiie ettt e e e st e e e ere e e s areeeesntaeeeennes 6
2.1.1 Streaming Platform with Data Stream Apps (Apache Kafka)ccccouveeeiiiieiciiiiee e, 6
2.1.2 Device Metadata (SENSOITNINES) ...eiciciuiieeiiieeeeiiee e cee e stre e e et e e e rtre e e str e e e eereeessasaeeesstaeeeasseeesnsnnas 7
2.1.3 Digital Twin Platform ldentity Data MOdEl........cueiiiuiiieiiiiie et e e 7
2.2 Digital TWIN SEIVICE JQYEI ...eiiiiieiieitee ettt ettt et e st e et e st e e s bt e sbeeebeesbeeeneenane 8
23 Application and User INTerface layeroo oo 8
T 1= 10 4 [l UL - 1Y T T T T T T U T TP 8
3.1 Welcome screen and USer regiStration..........cc.iieicciiiiiiiiee ettt e e e e e are e s are e e e sbr e e e estaeeennaeas 9
3.2 Company and Systems ManagemMENTuuiiiiiiiiiiiieiee st e e s e e e e e s ebrrr e e e e e s sesaberaeeeeeesennnrnnes 12
0 N 0014 o o - [o1 [T S TP 12
R I VL (=Y o o [TSP 13
33 ClIENt APPICATIONS ...eeeeieeeeee ettt ettt et s bt e bt e e bt e saeeebe e e sbte s bt e e sneeenneas 15
3.4 SErEaMING APPIICATIONS ..ceeiiee ettt e e st e e et e s eate e e sbaeeeesstaeeesnanaeesnseeeeasaeeeannes 17
35 Monitoring and analysing data StrEamMScecuiiiiiciee e 20
4. Source Code and CUMENT STATUSoceiiiiiiiiriiieeree ettt sae e e e esreene s 21
LT o 14 Tol [T o OO P TSR OPRPRPROP 21
AppendiX A. INSTAIAtioN GUIE......ceii i e e e e e st e e e e e e e e st taeeeeaeeesasbaareeeeeessnntaareeeens 22
SETUP MBSSAZING LAY it eeeaeaeaanans 22
) R CTe TU T =T 0 41T TSSO 22
2) Setup Apache Kafka and its lIDrarycocuiiiieiiiic ettt e e re e st sbe e s re e s b e e staeenree s 22
3) Setup SensorThings Server (GOST) t0 add SEMANTICSeviveurieeiiiieeeiiie e e e e sereeeenees 23
Ry =l D= 4 Yo I o] o] [Tor= [Y 13 23
CArFIEET - PrOSUME «..eiiiiiiiiieeeteet ettt ettt ettt st e a et see e e s e e n e n e e n e senesanesmeenneenneenneenneens 23
WEatherSErviCe - PrOGUCETcoouiiiiiieiiie ettt st s e sbee s e e sbee s b e e snnesneas 23
Analytics - Consumer and DataStack........ccuuiiiiiii i a e s 23
Stream Hub - CONNECE the SYSTEMS ..c...e e e e e e e e e et e e e e e e s esaataaeeeeaeenans 24
Track what happens behind the SCENES:uuiii i e e e e s et e e e s nae e e e ereeeeanes 24
[DT=T o] Lo} VZa Y= ol e o Y= TN LU] Y SRS 25
PIAtFOrMM Ul ...ttt ettt sttt st s sbee s et e bt e et see e ebeesn e e s b e e reenesanesaeenae 25
Ry = LT Y= L= o] F= o] o S 25
AppendixX B: Client APPICAtIONS ...ceiii it e e e e e et ae e e e e e e e s et aaseeeeeesasbaaeeeaeeesanntaareaaans 25

Version V1.0 Page 3 /27

loT4CPS — 863129

D5.5.2 Lifecycle Data Management Prototype Il

PUBLIC

Abbreviations

API Application Programming Interface
CPS Cyber-Physical System
CRUD Create, Read, Update, Delete
DNS Domain Name System
GOST Go-SensorThings
JSON JavaScript Object Notation
OAuth2.0 OAuth 2.0 Authorization Framework
RAMI4.0 Reference Architecture Model Industrie 4.0
REST Representational State Transfer
SSL Secure Socket Layer
TLS Transport Layer Security
URI Universal Resource Identifier
URL Universal Resource Locator
uuID Universally Unique Identifier
Version V1.0 Page 4 /27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Executive Summary

This deliverable documents the developments of the Lifecycle Data Management Prototype Il. It presents the
second iteration of the Digital Twin Platform that was created to connect “loosely coupled” components (client
applications) to share data with third parties, keeping stakeholder control over subsets of the data by the clients
through customisation. This concept has been implemented by the creation of a data-streaming platform around
the scalable open-source framework “Apache Kafka”, in which each of the “data producer” to “data consumer”
relation is defined by a separate communication “topic”. Kafka Streaming Applications, which can be configured
with additional filter functions, connect publishers and subscribers with each other to exchange the contractually
agreed data streams.

The source code of the prototype is released under a permissive open source license and can be found on the
project-internal GitLab instance (https://git-service.ait.ac.at/im-loT4CPS/WP5-lifecycle-mgmt). To provide any

reader of this public deliverable access to the open source code, a fork on GitHub (https://github.com/iot-

salzburg/panta_rhei) has been created that is public and updated regularly.

Version V1.0 Page 5 /27

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt
https://github.com/iot-salzburg/panta_rhei
https://github.com/iot-salzburg/panta_rhei

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

1. Introduction

This report contains the second iteration of a Digital Twin Platform prototype developed in the IoT4CPS project
(as part of Work Package WP5 “loT Lifecycle Management”, within Task 5.5). Being the successor of public
deliverable D5.5.1, published in July 2019, it contains the advances achieved during the Implementation period
from July 2019 to October 2019.

The goal of the developed Digital Twin concept and prototype is to support scenarios, where several data
suppliers can exchange their live data without additionally storing it in a central data collection point. At the
destination, the data subsets will then again be set into the local context in order to be interpreted correctly.
In this part of the prototype implementation, we concentrate on the aspect of sharing data streams and meta-
data information between CPSs across boundaries of companies and administrative domains. This is especially
important in all use cases of a multi-tenant Digital Twin Platform, where multiple systems of multiple
companies are involved along the value chain. In the final prototype application, we want to demonstrate the
life cycle data management of automotive components in use, with stakeholder control over subsets of the
data and - through customisation — keeping compliance with different regulations regarding privacy and third-
party usage of data. Therefore, we created a simple data model for meta-information about stakeholders
including a management Ul to support the multi-tenant access on sensor data streams.

The report on the final prototype (D5.5.3), including data analytics aspects will follow in June 2020.

2. Architecture Overview of the Prototype

In this section, we describe the layered architecture of our Digital Twin Platform prototype. An architectural
overview is shown in Figure 1, which distinguishes between two types of clients of the platform (upper layer),
the application run on a CPS and the end-user interacting with the system for administrative tasks. While the
first one usually directly runs on an embedded system (e.g. within the connected car), the latter one enables
any interaction through a user interface device, such as a web browser or a mobile application. The following
sections describe the single layers of the architecture, from the bottom to the top.

streaming Me.ta i pges User/Privacy . User
Data API via via secure kripimeen e

secure Token Token - g 1 Interface

'oken Service Device “«‘“37115‘* 2 User Register

REST API

el
()
n
© C
m o
1 ©
c &
5o
g €
o

' Device g J ’ Privacy & & J
L Metadata Security

Figure 1 — High-level Component Architecture

3

2.1 Digital Twin Messaging and Data layer

2.1.1 Streaming Platform with Data Stream Apps (Apache Kafka)

Core functionalities required in Digital Twin Platforms are scalable data streaming and complex event
processing, which has been implemented using Apache Kafka. In the demo setup, Kafka just runs on a single
node. In production environments, however, Apache Kafka can and should be scaled out and distributed
among a cluster of nodes for both performance and fault-tolerance reasons. Beneath the data streaming itself,
Kafka also allows the creation of “Data Streaming Applications” using Kafka Streams?, which can subscribe to

! Kafka Streams: https://kafka.apache.org/documentation/streams/

Version V1.0 Page 6 /27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

various source data streams, filter, process, or analyse them and return altered data streams back to the Kafka
cluster.

2.1.2 Device Metadata (SensorThings)

Sensors usually have specific metadata, such as the type of observation, the observation property, unit of
measure or any other description of the sensor devices (things) itself. Instead of conveying that data in each
and every data packet delivered for a measurement, this information is managed using an external
SensorThings server. A SensorThings server provides a SensorThings API2 as defined by the Open Geospatial
Consortium (OGC). For the prototype implementation we use a GOST SensorThings server?, running inside
three Docker? containers (one for the database, one for the service APl and one for the dashboard).

2.1.3 Digital Twin Platform Identity Data Model

For managing the basic data within the Digital Twin Platform prototype it requires a simple data model for
creating relations between the single entities. In the data model we define users, companies, clients, streams
and systems. “Systems” is a general term that we use here for grouping single CPSs and service applications
that serve for a specific purpose, e.g., a weather service including weather stations. For identification and
structuring of multiple systems, we propose to use a hierarchical approach according to the RAMI4.0 reference
model, which defines “workcenters” and “stations” below each organisation (or company). In our prototype,
this substructure model is composed of simple strings using the dot-notation know from DNS. A system, which
is owned by a single company, can have multiple clients and multiple data streams. According to the model, a
data stream connects exactly one source to one target system. However, using the data stream
implementation as described in more detail in section 3, flexible many-to-many communication streams are
possible.

In this prototype, for simplicity a local PostgreSQL® database was used. A production-grade system can also
include more advanced user and identity management, such as OAuth2.0%-based authorization servers. The
physical data model is shown below (Figure 2).

2 SensorThings: https://github.com/opengeospatial/sensorthings
3 GOST (Go-SensorThings) is an 10T Platform written in Golang (Go): https://github.com/gost/server
4 GOST: https://www.gostserver.xyz/tutorials-installation-docker/

5 PostgreSQL.: https://www.postgresgl.org/
® The OAuth 2.0 Authorization Framework, IETF RFC6749, RFC8252

Version V1.0 Page 7 /27

https://github.com/opengeospatial/sensorthings
https://github.com/gost/server
https://www.gostserver.xyz/tutorials-installation-docker/

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

is_admin_of_com

PF* user_uuid
* company_uuid
F * creator_uuid
datetime companies
a» Is_admin_of_PK (user_uuid, company_uuid) P * uuid
users |¢———————————1<%5 admin_user_FK (user_uuid) b

- - = “ enterprise

P uuid 2 <—£?I§ admin_of_company (company_uud) datetime

o &% creator_user_FK (creator_uuid)
first_name) - description v

sur_name
birthdate

* email

* password

‘—%!\‘ * user_uuid

FF* system_uuid
& user_PK (uuid) F * creator_uuid
datetime

@ is_agent_of_PK (user_uuid, system_uuid)

systems

&3 admin_user_FKv2 (user_uuid) P * uuid

%5 is_admin_of_system_FK (system_uuid) B——lF + company_uuid

5 creator_agent_FK (creator_uuid) Norkcsater

* station
datetime
description

>t Pigs system_PK (uuid) v

clients Pt \
P name VA AR2 (25)

FF* system_uuid
metadata_name
metadata_uri
keyfile_av
datetime

F * creator_uuid
description

streams

P * name VARCHAR? (2
FF* system_uuid 1
source_system
target_system
filter_logic
status
datetime
description
creator_uuid

& client_PK (name, system_uuid)

§ client_user_FK (creator_uuid) £
#5 client_system_FK (system_uuid)

& streams_PK (name, system_uuid)

85 system_uuid (system_uuid)
5 creator_uuid (creator_uuid)

Figure 2 — System Data Model
Note that in our data model we use a n:m connection between companies and users, instead of the usual 1:n
relationship. This enables the users to manage multiple companies, which is useful in cases where e.g. an IT-
Service company should manage data streams for multiple other companies without any IT personnel available.
The same is true for the relation between users and systems, i.e., one user can manage multiple systems and
one system can be managed by different users.

2.2 Digital Twin Service layer

The service layer provides controlled access to the database and implements the standards CRUD operations
on companies, users, systems, clients and streams. In the prototype, the service layer is implemented in Python
and Flask’.

2.3 Application and User Interface layer

As already mentioned, the Digital Twin Platform provides separate interfaces for the users and applications
running on CPSs. The user interface provides simple management functionality (list, add, show, delete) for
companies, systems, data streams and the users itself (including registration, login). The API for the CPS is
implemented in Apache Kafka, clients can either use the Kafka REST API, or directly implement a Kafka
consumer and / or producer. Sample consuming and producing client applications implemented in Python are
provided together with the platform.

3. Demo Use Case

In this section, we describe the main flow of events using screenshots of the prototype according to a demo
use case about connected cars. In particular, the use case involves connected cars of a car rental company
located in Iceland, where cars are enabled to exchange weather and temperature information with each other
and with a central weather service. Before we discuss on the use of the platform in detail, we describe the data
flow in the platform shown in Figure 3.

7 https://palletsprojects.com/p/flask/, https://github.com/pallets/flask

Version V1.0 Page 8 /27

https://palletsprojects.com/p/flask/
https://github.com/pallets/flask

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il

Weather
Service

Station 1

REST API

PUBLIC

\ - .

CarFleet Service Layer §8 Kafka Topics
W ~
.. — & E = m StreamApp(
— § § % ” — stream-name,

i | source-system,

Analytics Pl i 3 1 §§ ' filter-logic)
£
| — o

StreamApp(
stream-name,

source-system,
filter-logic)

Station 2

Streaming
Data APl via

secure Token

Device
Metadata

Forecast

=)\)) |

Figure 3 — Data Streaming between CPSs

On the left side, the client applications are shown, which are implemented directly in the cars, in some
analytics backend or at a weather service provider. These applications can send (produce) single data objects to
or receive (consume) them from the streaming platform via the service layer. The service layer handles access
control and additionally provides the metadata for the single data objects on request. This can be for example
meta-data information on the sensor, such as the unit of measurement or accuracy of the measured values.
For each system, three separate Kafka topics with a name and three different suffixes are created (“.int”, “.log”
and “.ext”). Once the service layer has been passed, each stream is published to its own topic name using
either the internal (“.int”) or the logging (“.log”) suffix. Internal topics are used for the communication of
applications and CPSs within a single system. Furthermore, a streaming app can subscribe on an internal topic,
combine several data streams to a new one and implement filter rules, e.g. to only get warnings if some
predefined thresholds are passed. In contrast to communication between clients within a single system, the
resulting stream of a stream application is finally forwarded to an external topic of another target system.
Therefore, only stream apps are permitted to publish on external (“.ext”) topics. This means the “ext”-topics of
one system store data from other (external) systems rather than their own data.

The resulting stream will be sent back through the service layer and can be consumed by any authorised
consumer client application that subscribe to that data stream.

3.1 Welcome screen and user registration

After the service has been started, some users need to be registered to be able to use the platform prototype
itself. As shown in Figure 4, the welcome screen contains the basic steps required to start a data stream, an
exemplary illustration of the data flows and the link to its source code repository.

Version V1.0 Page 9 /27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Digital Twin Platform search _

Digital Twin Platform

This open source loT platform reduces the complexity of your cross-station,
cross-company and cross-domain data streams.

CarFleet Service Layer §.‘; Kafka Topics §€ Streams
= ~ [N
\m [ISlreamnpplj
- stream-name

Analytics |,
Application

REST API

source-system,
E : filter-logic)

Nm StreamApp(

Ul Y,

Example Dataflow for multiple CPSs and services.

Weather
Service

Station 2

Central
Service

Data API via

secure Token

Workflow with three steps:

Register yourself, your company and system of CPSs and service
This is done using this platform.

Register client applications for your CPSs and services

The generated config on the platform can be used by the provided python client in order to publish and consume data
from your CPS's and service's application to and from the platform. This allows you to share data between CPSs and
services within the same system.

Create cross-system streams

Once data is published to your system, you can share your data-streams to any target system. This enables you to
create cross-station, cross-company and cross-domain data-streams.

Get started now!

More information:

The documentation, examples and it's source code are available on the project's repository.

Figure 4 — Welcome Screen and Introduction
From the welcome screen, the user can use the “register” button for self-registration to the system as shown in
Figure 5. If the user is already registered, he or she can directly navigate to the login.

Version V1.0 Page 10/ 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Digital Twin Platform

Register

First Name
Maria

N
ame Digital Twin Platform

Musterfrau

Email You are now registered and can log in.

mmusterfrau@gmail.com .
Login

Email

Password

essssese
mmusterfrau@gmail.com

Confirm Password
Password

esessene
sssesnee

Figure 5 — Self-Registration and Platform Login

Once the user is registered and logged in, the user will see an empty dashboard (Figure 6), listing companies,
systems, client applications and data streams accessible by the current user. The user has now the option to

add new instances, which is described in more detail in the next section.

Digital Twin Platform companies systems clients streams

‘You are now logged in

Dashboard

Welcome Maria Musterfrau!

To get started, find examples and check the open source code, check the project's git repository.

Your companies

A list of companies that you are admin of:

uuid Domain Enterprise Creator

No companies were created yet.

Add Company

Your systems

A list of systems of CPSs and services that you are admin of:

uuid Company System Creator

No systems were created yet.

Add System

Your client applications

A list of client applications of whose dedicated system you are admin of:
Name Company System Creator

Add Client

Your streams

A list of streams of whose source system you are admin of:

Name Source System Target System Status Creator

Add Stream

Figure 6 — Initial, empty Dashboard

Version V1.0 Page 11 /27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

3.2 Company and Systems Management

In this section we show, how to manage companies and systems. In the presented use case the company, users
and systems for the weather service is presented.

For the full demo scenario, a second company for the car rental service (car fleet) needs to be created,
including corresponding users and systems in order to exchange datastreams between multiple systems.

3.2.1 Companies
The first step is to register a new company, which will be the owner of the cyber-physical systems created later.
As shown in the screenshot in Figure 7 below, for demonstration purposes, a company is simply identified by a

top-level domain, a short name and an optional description.

Digital Twin Platform companies systems clients streams about

Register new company

The domain-enterprise should identify your company. Itis recommended to use the top- and second-level domain of your company's
website.

Domain

at

Enterprise short-name

mfc

Description

The description is optional.

Figure 7 — Register / create companies

A list of all companies that can be managed by the current user is shown in Figure 8, which currently contains
exactly the just registered company. The blue button “manage company” leads to the next screen (Figure 9), in
which other company admins and systems can be added.

Digital Twin Platform companies systems clients streams about search

The company 'at.mfc' was created.

Your companies

A list of companies that you are admin of:

uuid Domain Enterprise Creator

3803541d99b7 at mic mmusterfrau@gmail.com
Add Company

Figure 8 — List companies

Version V1.0 Page 12 / 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

A company admin has the permission to create and delete systems as well as other company admins. Admins

can also delete the selected company.

Digital Twin Platform companies systems clients streams about

Company identifier: at.mfc
Created by mmusterfrau@gmail.com on 23. October 2019.

Systems for CPSs and services within the company

uuid Workcenter Station

Add System

Admins of the company

First Name Name Contact

Maria Musterfrau mmusterfrau@gmail.com
Add Admin

Figure 9 — Show companies
Systems for CPSs and services within the company can be added using the green “Add System” button. How
systems can be defined is described in the next section.

3.2.2 Systems

In our context, a system is a logical entity that groups together multiple applications and CPSs, which serve a
common purpose. The user can provide its own system identifiers using a unique combination of a workcenter
short-name and station name within the related company. Still, each system will get universally unique
identifier (UUID) for globally unique identification. The notations of workcenter and station are taken from the
RAMI 4.0 reference model. They allow the creation of a logical hierarchical structure within a company (or
enterprise). Having that, system instances can again be assigned and grouped into such structure. The screen
on how to add new systems to the company on the platform is shown in Figure 10 with the example of the
weather service.

Version V1.0 Page 13/ 27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Digital Twin Platform companies systems clients streams about search Stefan logout

Add new system to company is.iceland

The workcenter-station should identify your system within the company. It is recommended to use a comprehensive shart-name for
the station and organize the hierarchies in the workcenter with dashes.

Workcenter short-name
iot-iotdcps-wp5
Station

WeatherService

Description

The description is optional.

Figure 10 — Add systems to companies

Once a system is created, it has several options that need to be further defined. The overview of a newly
created system is shown in Figure 11, which can contain client applications, stream applications and system
administrators. Similar to companies, systems also have dedicated administrators. System administrators have
the permission to register and manage client applications and streaming applications that are assigned to this
system. One company administrator can assign multiple system administrators for managing their systems.
Client applications can be created by using the “Add Client” button and are used to produce data to and
consume data from the Digital Twin Platform. They are described in more detail in the next section.

Streaming applications can be created by using the “Add Stream” button and are used to connect the selected
system to another system for data exchange. While the selected system is the source system, the other system
will be shown as target system.

Additional system administrators can be invited or assigned by using the “Add Admin” button.

All added clients, streams, admins or even the whole system can be deleted using the corresponding “delete
system” buttons.

Version V1.0 Page 14 / 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il

PUBLIC

Digital Twin Platform companies systems clients streams about

The system 'is.iceland.iot-iotdcps-wp5.WeatherService' was created.

System identifier: is.iceland.iot-iot4cps-
wpS.WeatherService

Part of the company: is.iceland

Created by stefan.gunnarsson@gmail.com at 2019-10-23 10:01:30.

Client applications
For connecting CPSs and services:

Name Company System Creator

Add Client

Stream applications
For sharing data from this system to another:

Name Source System Target System Creator

Add Stream

Admins of the system

Name Contact

Stefan Gunnarsson stefan.gunnarsson@gmail.com
Add Admin

Figure 11 — Show system details (newly registered system)

3.3 Client Applications

A client application denotes a piece of software, deployed as part of a service or connected device (“thing”),
which is intended to communicate with other services or devices. In the use case example, this would be a
connected car, which provides its own measured temperatures including spatiotemporal information to other
cars. In the same time, it may receive external temperature data from other cars or weather stations for the
next few hundred meters along the driving path to increase the safety of the driver.

Before the client application can send or receive data, it needs to be registered within a previously defined
“system”. This can be done using the “Add Client” button. The registration screen for the clients is shown in
Figure 12 for the system “is.iceland.iot-iot4cps-wp5.WeatherService”.

Version V1.0 Page 15/ 27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Digital Twin Platform companies systems clients streams about search

Add new client application to system is.iceland.iot-
iot4cps-wpS.WeatherService

The name of the client application will be immutable. A keyfile will be created automatically by submission.
Name

weatherstation_1

Metadata Name

SensorThings

Metadata URI

http:/Mocalhost:8082/

Description

The description Is optional

Figure 12 — Register client applications within systems

When registering such a client application, its name must match with the unique dedicated system entry in the
Digital Twin Platform. Moreover, a name and URI for metadata description has to be provided, as shown in the
configuration of the client in Figure 13 below. In our example, we create a client application for a single
weather station (“weatherstation_1"). Note that in a production scenario a high number of clients can be
added programmatically by directly using the REST-API.

Once a client is created, the screen from Figure 13 will be shown to the user. In addition to the data entered
above, two important information elements are presented. First, a short JSON configuration data structure that
can be used to create the client application itself by copy & paste. Second, if a client application is registered, a
SSL-key will be generated that can also be used by the application. However, the usage of this key by the client
application is not implemented in the current examples but will be added to the third prototype
implementation (D5.5.3).

All access for clients can be revoked by deregistration of the client in the Digital Twin Platform. This can be
achieved by using the “delete client” button.

Version V1.0 Page 16 / 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Digital Twin Platform companies systems clients streams about

A client application with name 'weatherstation_1' was registered for the system 'is.iceland.iol-iotdcps-wp5.WeatherService'.

Client name:

Weatherstation 1 Config to connect a CPS or service:

Copy & Paste this config into your client application, see here.
{

This is a registered Client application of the "client_name": "weatherstation 1",
"system": "is.iceland.iot-iotdcps-wp5.WeatherService",
system: "gost_servers": "http://localhost:8084/",

"kafka_bootstrap_servers": localhost:9@92"

is.iceland.iot-iot4cps- }
wpS.WeatherService
Metadata Name: SensorThings

Client's name System Company Creator's mail Created at Key
weatherstation_1 iot-iotdcps- is.iceland stefan.gunnarsson@gmail.com 2019-10-23 download
wp5.WeatherService 10:04:14 key

Figure 13 — Manage client applications within systems

For the simple creation of an example producer or consumer application in Python, a “DigitalTwinClient” class
is provided in the source code repository, where only the shown config object (Figure 14) needs to be passed as
the only constructor parameter.

config = {"client_name": "car_1",
"system": "cz.icecars.iot-iot4cps-wp5.CarFleet",
"gost_servers'": "localhost:8084",
"kafka_bootstrap_servers": "localhost:9092"}

Figure 14 — Client Configuration
Beneath client_name and system id, the client needs a kafka_bootstrap_server to connect as publisher or
subscriber, and an address to a gost_server (SensorThings), which provides the meta-data information for the
sensor data flow (as described in Section 2.1.2). A whole example source code for such client application, which
shows how to produce and consume data to the platform, is also listed in Appendix B: Client Applications.

3.4 Streaming Applications

A streaming application enables the communication between a source and a target system. Once deployed, it
subscribes the internal topic of the specified source system, combines several data streams to a new one and
implement filter rules, e.g. to only get warnings if some predefined thresholds are passed. The resulting stream
is then forwarded to the external topic of the target system. Hereby, these external topics are used to receive
data from, and only from, streaming applications.

In order to create a new stream application within a given source system, a unique name for the stream and a
target system is mandatory. In our example, the source system is the weather service and the target system
will be the whole car fleet of the rental company. Therefore, the stream is simply named “weather2cars”.

This stream will forward data from the source system to the target system. Additionally, a filter logic can be
defined, which can be considered as a description language for selecting and filtering time-series datastreams.

Version V1.0 Page 17 / 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

The default value is an empty clause like shown in Figure 15, what implies that any data from the source system

is forwarded to the defined target system. Within Prototype Il, only this trivial default case is implemented.

Digital Twin Platform companies systems clients streams about

Add new stream to system

The name of the stream application will be immutable.
Name

weather2cars

Target System

cz.icecars.iot-iotdcps-wp5.CarFlest

Filter Logic

{r

The Filter Logic must be a valid json.

Description

The description is optional.

Figure 15 - Creating a new stream application.

In Figure 16, the view of the streaming application “weather2cars” is shown. As no filter logic is provided, any
data point from the source system “is.iceland.iot-iot4cps-wp5.WeatherService” is forwarded to the target
system. As depicted by the icon in the column “Status”, the streaming application started up and is running
without errors in the moment this snapshot was created. Within this view, the stream can be also stopped,

restarted and deleted with its configuration.

Digital Twin Platform companies systems clients streams about

The stream 'weather2cars' is slarting.

. delete stream
Stream name: weather2cars | detto s |
Source System Target System Creator's mail Created at Status Action
is.iceland.iot- cz.icecars.iot- stefan.gunnarsson@gmail.com 2019-10-23 m stop
iotdcps- iotdcps- 10:17:46 stream
wpb.WeatherService wp5.CarFleet

Stream filter logic:
{

"Filter™: "

}

Figure 16 - View of the streaming application "weather2cars".

Version V1.0 Page 18/ 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il

PUBLIC

Finally, Figure 17 shows the finally created system of our demo scenario including three client applications for
connecting CPSs with e.g. the forecast service, two streaming applications and two system administrators. One
streaming applications is to distribute the weather information from the stations to the cars, while the other
one will send all weather information to a central road analytics service for long term investigation of the

System identifier: is.iceland.iot-iot4cps-
wpb5.WeatherService

Part of the company: is.iceland

weather conditions.

Digital Twin Platform companies systems clients streams search

Created by stefan.gunnarsson@example.com at 2019-10-23 10:27:01.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa.
Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis,
ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim.

Client applications
For connecting CPSs and services:

Name Company System Creator

stefan.gunnarsson@example.com manage delete
stefan.gunnarsson@example.com manage delete
stefan.gunnarsson@example.com manage delete

weatherstation_1 is.iceland iot-iotdcps-
wp5.WeatherService

weatherstation_2 is.iceland iot-iotdcps-
wp5.WeatherService

forecast_service is.iceland iot-iotdcps-
wp5.WeatherService

Add Client

Stream applications

For sharing data from this system to another:

Name Source System Target System Creator
weather2cars is.iceland.iot- cz.icecars.iot- stefan.gunnarsson@example.com
iotdcps- iotdcps-
wp5b.WeatherService wpb.CarFleet

weather2analytics is.iceland.iot-
iotdcps-
wpb.WeatherService

Add Stream

Admins of the system

Name Contact

at.datahouse.iot- stefan.gunnarsson@example.com

iotdcps-
wp5.RoadAnalytics

Peter Novak peter.novak@example.com

Stefan Gunnarsson

Add Admin

stefan.gunnarsson@example.com

Figure 17 - View on the a system including three client applications and two streaming applications (using

dummy text for system description)

Version V1.0

Page 19/ 27

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

3.5 Monitoring and analysing data streams

In most use cases, monitoring and analysing of collected data is a substantial feature of a digital twin platform.
Therefore, we also included an analytics tool stack in the source code, including well-accepted third-party open
source components that:

e Retrieve and store data,

e Visualize data and

e Provide an interactive analytics environment for use-case specific analyses.

In detail, the Elastic Stack® is used for storing the time-series data and Grafana® is used for the visualization, as
this combination is well suited for metrical data and is still flexible enough to embed HTML snippets or
interactive 3D graphics using plugins. Data analytics can be deployed in Jupyter®® notebooks, which are browser
applications that run code of various languages and use the rich data science packages provided by the
Anaconda®! project. Figure 18 gives an overview of the tool stack, where the red arrows depict the direction of
the data flow.

To minimize the effort for the setup and help the developer to focus on his or her main task, each component
is “dockerized”, i.e., the installation process including some provisioned configuration is set in a Dockerfile??
that can be deployed using a single command. More information about the setup can be found in Appendix A
and the referred repository.

Provided Toolstack

[Gorafana = jupyter)

CarFleet Service Layer
Car1

i

-

Coen)
o3 !
Analytics 5.%
” Application || S3
- £ 3
& o
| o =
Weather g)
Service
ey
:
.5
o
— = g
Forecast 8 = |
Service \ /

Figure 18 - The Analytics sample code provides a Data Science toolstack.

8 Elastic Stack: https://www.elastic.co/

% Grafana: https://grafana.com/

10 Jupyter Project: https://jupyter.org/

11 Anaconda Project: https://www.anaconda.com/
2 Docker: https://www.docker.com/

Version V1.0 Page 20/ 27

loT4CPS — 863129

PUBLIC

D5.5.2 Lifecycle Data Management Prototype Il

4. Source Code and Current Status

The source code of the platform can be found on a GitLab instance that is hosted by AIT3. To provide any

reader of this public deliverable access to the open source code, a fork!* on GitHub has been created that is

public and updated regularly.

Table 1 shows the milestones and the current achievements. The major effort in the next months will be

needed for the milestones “security” and “stream apps”.

Table 1: Current status per milestone.

Use-Case Finished
Architecture Finished
Streaming
Capability Finished
finished for the use-case, could be
Semantic extended for actuators

Demo-Clients

Platform Ul

Security

Stream apps
Dissemination

5. Conclusion

Finished

Finished, some UI/UX improvements
are possible

Finished to secure the platform;
secure AP| for the platform;
communication via SSL/TLS via a
given key

Finished the Ul

basic deployment is finished;
design a filter logic language;
parsing the filter logic

Document new features

This deliverable documents the status of the Digital Twin Platform Prototype by November 2019. Based on a
proof-of-concept use case it was demonstrated, that the platform already enables user and company
registration, and that users can create client applications for exchanging data via data streaming applications.
Currently, the data model of the data exchanged is still limited and will be targeted in the next iteration of the
implementation, together with the finalisation of the platform security and the streaming applications.

The final implementation of the prototype will be released in the last quarter of the project in August 2020.

13 Gitlab WP5: https://qgit-service.ait.ac.at/im-10T4CPS/WP5-lifecycle-mgmt

14 Fork on Github: https://github.com/iot-salzburg/panta_rhei

Version V1.0

Page 21/ 27

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

Appendix A. Installation Guide

In this appendix, we provide the current snapshot version of the installation guide. An updated version will be
continuously available within the project-internal GitLab repository®®. The final version will also be published on
GitHub. The installation guide includes five subtopics:

e Setup of the Messaging Layer

e Starting of Demo Applications

e Tracking to see what happens behind the scenes

e Deployment on a cluster

e Platform Ul

Setup Messaging Layer

1) Requirements

e Install Docker'® version 1.10.0+

e Install Docker Compose’’ version 1.6.0+

e Clone the WP5 GitLab repository: https://git-service.ait.ac.at/im-loT4CPS/WP5-lifecycle-mgmt
e |Install python modules:

pip3 install -r setup/requirements.txt

This is an instruction on how to set up a demo scenario on your own hardware using Ubuntu 18.04. It contains
only the most essential steps without any special procedures for different computer environments. In case of
any installation problems with individual basic software components, we ask you to visit the corresponding
web pages.

2) Setup Apache Kafka and its library

The Datastack uses Kafka version 2.1.0 as the communication layer, the installations is done in /kafka.

sudo apt-get update

sh setup/kafka/install-kafka-2vl.sh

sh setup/kakfa/install-kafka-libs-2vl.sh
optional:

export PATH=/kafka/bin:S$SPATH

Then, start Zookeeper and Kafka and test the installation:

Start Zookeeper and Kafka Server

/kafka/bin/zookeeper-server-start.sh -daemon
kafka/config/zookeeper.properties

/kafka/bin/kafka-server-start.sh -daemon kafka/config/server.properties

Test the installation

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --1list
/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --create —--topic
test-topic --replication-factor 1 --partitions 1
/kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
test-topic

15 Gitlab WP5: https://qgit-service.ait.ac.at/im-10T4CPS/WP5-lifecycle-mgmt
16 https://www.docker.com/community-edition#/download
17 https://docs.docker.com/compose/install/

Version V1.0 Page 22 / 27

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt
https://www.docker.com/community-edition#/download
https://docs.docker.com/compose/install/

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il

PUBLIC
>Hello Kafka
> [Ctrl]+C
/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --
topic test-topic --from-beginning

Hello Kafka

If that works as described, you can create the default topics:

sh setup/kafka/create defaults.sh
/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --list

If multiple topics were generated, everything worked well.

3) Setup SensorThings Server (GOST) to add semantics

docker-compose -f setup/gost/docker-compose.yml up -d

The flag -d stands for daemon mode. To check if everything worked well, open http://localhost:8084/ or view
the logs:

docker-compose -f setup/gost/docker-compose.yml logs -f

Start Demo Applications
Now, open new terminals to run the demo applications:

CarFleet - Prosumer

python3 demo_applications/CarFleet/Carl/car 1l.py
> INFO:PR Client Logger:init: Initialising Digital Twin Client with name
'demo_car 1' on 'at.srfg.iot-iot4cps-wp5.CarFleet'

> The air temperature at the demo car 1 is 2.9816131778905497 °C at 2019-
03-18T13:54:59.482215+00:00

python3 demo_applications/CarFleet/Car2/car 2.py
> INFO:PR Client Logger:init: Initialising Digital Twin Client with name
'demo_car 2' on 'at.srfg.iot-iotdcps-wp5.CarFleet'

> The air temperature at the demo car 2 is 2.623506013964546 °C at 2019-03-
18T712:21:27.177267+00:00

> -> Received new external data-point of 2019-03-
18T13:54:59.482215+400:00: 'at.srfg.iot-iotdcps-wp5.CarFleet.car 1.Air
Temperature' = 2.9816131778905497 degC.

WeatherService - Producer

python3 demo applications/WeatherService/demo station 1/demo station 1l.py
python3 demo applications/WeatherService/demo station 2/demo station 2.py
python3 demo applications/WeatherService/central service/weather-service.py

Here, you should see that temperature data is produced by the demo stations and consumed only by the
central service.

Analytics - Consumer and DataStack
The Analytics Provider consumes all data from the stack and pipes it into an Elastic Grafana and Jupyter
Datastack.

First, the following configurations have to be set in order to make the datastore work properly:

Version V1.0 Page 23 / 27

http://localhost:8084/

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

ulimit -n 65536 # Increase the max file descriptor
sudo sysctl -w vm.max map count=262144 # Increase the virtual memory
sudo service docker restart # Restart docker to make the changes work

Further information is available on the Elastic Search Website.

Now it can be started:

sh demo_applications/InfraProvider/start-full-datastack.sh
Wait until Kibana is reachable on localhost:5601
python3 demo applications/InfraProvider/datastack adapter.py

Available Services:

e |ocalhost:9200 Elasticsearch status

e |ocalhost:9600 Logstash status

e |ocalhost:5000 Logstash TCP data input

o localhost:5601 Kibana Data Visualisation Ul

o localhost:3000 Grafana Data Visualisation Ul

e localhost:8888 Jupyterlab DataScience Notebooks

As no StreamHub application runs for now, no data is consumed by the datastack-adapter that ingests it
into the DataStack. Therefore, it is important to start the StreamHub applications as noted in the next section.

Stream Hub - Connect the systems
The StreamHub application can be regarded as hub for the streamed data. Run the built jar file to share data
from the specific tenant to others:

java -jar

demo applications/streamhub apps/out/artifacts/streamhub apps jar/streamhub
_apps.jar --stream-name mystream --source-system cz.icecars.iot-iotdcps-
wp5.CarFleet target-system at.datahouse.iot-iot4cps-wp5.RoadAnalytics --
filter-logic {} —--bootstrap-server 127.0.0.1:9092

If you want to change the streamhub application itself, modify and rebuild the java project in
demo applications/streamhub apps.
It is recommended, to start and stop the stream-applications via the Platform Ul, that provides the same

functionality as the command line interface.

Track what happens behind the scenes:

Check the created kafka topics:

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --1list
at.srfg.iot-iotd4cps-wpb.CarFleet.data
at.srfg.iot-iotd4cps-wpb.CarFleet.external
at.srfg.iot-iot4cps-wp5.CarFleet.logging

Note that kafka-topics must be created manually as explained in the Setup.
To track the traffic in real time, use the kafka-consumer-console:

/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --
topic at.srfg.iot-iotdcps-wp5.CarFleetl.data

18 https://www.elastic.co/guide/en/elasticsearch/reference/7.2/docker.html#docker-cli-run-prod-mode

Version V1.0 Page 24 / 27

http://localhost:9200/
http://localhost:9600/
http://localhost:5000/
http://localhost:5601/
http://localhost:3000/
http://localhost:8888/

loT4ACPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

> {"phenomenonTime": "2018-12-04T14:18:11.376306+00:00", "resultTime":
"2018-12-04T14:18:11.376503+00:00", "result": 50.05934369894213,
"Datastream": {"@iot.id": 2}}

You can use the flag ——-from-beginning to see the whole recordings of the persistence time which are two
weeks by default. After the tests, stop the services with:

/kafka/bin/kafka-server-stop.sh
/kafka/bin/zookeeper-server-stop.sh
docker-compose -f setup/gost/docker-compose.yml down

If you want to remove the SensorThings instances from the GOST server, run docker-compose down -v.

Deployment on a Cluster

For a production deployment of the messaging system, we recommend to setup the platform in a cluster
environment such as “Docker Swarm” or “Kubernetes”. A setup guide for a Docker Swarm deployment is
available in the Software repository.

Platform UI

The user interface is the recommended way to create system topics, which happens when registering a new
client, and to deploy and stop stream-applications that forwards selected data from one system to another.

Starting the platform

Before starting the platform, make sure postgreSQL is installed and the configuration selected in
server/.env points to an appropriate config in server/config. Forinstructions on how to install
postgres, various tutorials can be found in the Internet?®.

cd server

sudo pip3 install virtualenv
virtualenv venv

source venv/bin/activate

pip3 install -r requirements.txt
sh start-server.sh

The Platform will be available on port 1908.

Appendix B: Client Applications

In the following code snippet both, a subscriber (c1ient.subscribe(..)) as well as a producer client
(client.produce(..)) is implemented. Note that they will usually be separated into two separate threads.

#!/usr/bin/env python3
Demo Scenario: Connected Cars
CarFleet:
The connected car wants to enhance it's safety by retrieving temperature data, to warn the driver on
approaching slippery road sections. As each car has also temperature data that is of interest for other
cars, it sends this data to the the platform.

19 e.g. https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresgl-on-ubuntu-18-04

Version V1.0 Page 25/ 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

InfraProv:
The provider of the road infrastructure wants to enhance it's road quality and therefore consumes and analyses
data.
WeatherStation:
stations: The weather stations are conducted by a local weather service provider which provides the data as a
service.
service_provider: The weather information provider offers temperature data for it's customers.

i

import os

import sys

import inspect

import time

import pytz

from datetime import datetime

Append path of client to pythonpath in order to import the client from cli
sys.path.append(os.getand())

from client.digital_twin_client import DigitalTwinClient

from demo_applications.simulator.SimulateTemperatures import SimulateTemperatures

Get dirmame from inspect module

filename = inspect.getframeinfo(inspect.currentframe()) .filename
dirname = os.path.dimame(os.path.abspath(filename))

INSTANCES = os.path.join(dirname, "instances.json')
SUBSCRIPTIONS = os.path.join(dimame, "subscriptions.json'")

Set the configs, create a new Digital Twin Instance and register file structure
This config is generated when registering a client application on the platform
Make sure that Kafka and GOST are up and running before starting the platform
oonfig = {''client_name"": "aar_1",
"'system'': "'z.icecars.iot-iot4qps-wp5.CarFleet",
""gost_servers'': 'localhost:8084",
""kafka_bootstrap_servers': "ocalhost:9092'}
client = DigitalTwinClient(**config)
client. register_existing(mappings_fi1e=MAPPINGS)
client.register_new(instance_file=INSTANCES) # Registering of new instances should be outsourced to the platform
client. subscribe(subscription_fi1e=SUBSCRIPTIONS)
randomised_temp = SimulateTemperatures(t_factor=100, day_amplitude=4, year_amplitude=4, average=3)

try:
while True:
unix epoch and IS0 8601 UTC are both valid
timestamp = datetime.utcnow(. replace(tzinfo=pytz.UTC) .isoformat O

Measure the demo temperature
temperature = randomised_temp.get_tempQ

Send the demo tenperature
client.produce(quantity="temperature", result=temperature, timestamp=timestamp)

Print the temperature with the corresponding timestamp in ISO format
print(''The air temperature at the demo car 1 is {+ 'C at {}".format(temperature, timestamp))

Receive all queued messages of the weather-service and other connected cars and calculate the minimum
minimal_temps = 1istQ
if temperature <= O:

minimal_temps.append({"'origin": config["'system'], "temperature': temperature})

received_quantities = client.consume(timeout=0.5)
for received_quantity in received quantities:

Version V1.0 Page 26 / 27

loT4CPS — 863129 D5.5.2 Lifecycle Data Management Prototype Il
PUBLIC

The resolves the all meta-data for an received data-point
print(" -> Received new extermal data-point at {}: '{}' = {} {3."
.format(received_quantity["phenomenonTime'"],

received_quantity["'Datastream'] ["name'],
received_quantity["result"],
received_quantity[''Datastream'] ['unitOfMeasurement'] ["'symbol"']))

To view the whole data-point in a pretty format, uncomment:

print("Received new data: {}".format(json.dumps(received quantity, indent=2)))

if received quantity["result] <= 0:

mrinimal_temps . append(
{"origin": received quantity[''Datastream’']["'name'], "temperature": received quantity['result"]})

if minimal_temps != TistQ:
print(" WARNING, the road could be slippery, see: {}".format(minimal_temps))

time.sleep(10)

except KeyboardInterrupt:
client.disconnectQ

Version V1.0 Page 27 / 27

