

IoT4CPS – Trustworthy IoT for CPS

FFG - ICT of the Future

Project No. 863129

Deliverable D5.5.2

Lifecycle Data Management Prototype II

The IoT4CPS Consortium:

AIT – Austrian Institute of Technology GmbH

AVL – AVL List GmbH

DUK – Donau-Universität Krems

IFAT – Infineon Technologies Austria AG

JKU – JK Universität Linz / Institute for Pervasive Computing

JR – Joanneum Research Forschungsgesellschaft mbH

NOKIA – Nokia Solutions and Networks Österreich GmbH

NXP – NXP Semiconductors Austria GmbH

SBA – SBA Research GmbH

SRFG – Salzburg Research Forschungsgesellschaft

SCCH – Software Competence Center Hagenberg GmbH

SAGÖ – Siemens AG Österreich

TTTech – TTTech Computertechnik AG

IAIK – TU Graz / Institute for Applied Information Processing and Communications

ITI – TU Graz / Institute for Technical Informatics

TUW – TU Wien / Institute of Computer Engineering

XNET – X-Net Services GmbH

© Copyright 2019, the Members of the IoT4CPS Consortium

For more information on this document or the IoT4CPS project, please contact:

Mario Drobics, AIT Austrian Institute of Technology, mario.drobics@ait.ac.at

mailto:mario.drobics@ait.ac.at

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 2 / 27

Document Control

Title: Lifecycle Data Management Prototype

Type: Public

Editor(s): Felix Strohmeier (SRFG)

E-mail: felix.strohmeier@salzburgresearch.at

Author(s): Felix Strohmeier (SRFG), Christoph Schranz (SRFG), Violeta Damjanovic-Behrendt (SRFG)

Doc ID: D5.5.2

Amendment History

Version Date Author Description/Comments

V0.1 17.10.2019 Felix Strohmeier Initial version prepared

V0.2 20.11.2019 Felix Strohmeier, Christoph Schranz Draft for project-internal QA

V0.3 27.11.2019 Felix Strohmeier Minor updates in Appendix A

V0.4 02.12.2019 Arndt Bonitz Integrated Review Comments from AIT

V0.5 03.12.2019 Heribert Vallant Integrated Review Comments from JR

V1.0 12.12.2019 Felix Strohmeier Final Version for Publication

Legal Notices

The information in this document is subject to change without notice.

The Members of the IoT4CPS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The

Members of the IoT4CPS Consortium shall not be held liable for errors contained herein or direct, indirect,

special, incidental or consequential damages in connection with the furnishing, performance, or use of this

material.

The IoT4CPS project is partially funded by the "ICT of the Future" Program of the FFG and the BMVIT.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 3 / 27

Content

Abbreviations .. 4

Executive Summary ... 5

1. Introduction .. 6

2. Architecture Overview of the Prototype ... 6

2.1 Digital Twin Messaging and Data layer .. 6

2.1.1 Streaming Platform with Data Stream Apps (Apache Kafka) .. 6

2.1.2 Device Metadata (SensorThings) .. 7

2.1.3 Digital Twin Platform Identity Data Model.. 7

2.2 Digital Twin Service layer ... 8

2.3 Application and User Interface layer ... 8

3. Demo Use Case ... 8

3.1 Welcome screen and user registration .. 9

3.2 Company and Systems Management .. 12

3.2.1 Companies ... 12

3.2.2 Systems ... 13

3.3 Client Applications ... 15

3.4 Streaming Applications .. 17

3.5 Monitoring and analysing data streams .. 20

4. Source Code and Current Status ... 21

5. Conclusion ... 21

Appendix A. Installation Guide .. 22

Setup Messaging Layer .. 22

1) Requirements .. 22

2) Setup Apache Kafka and its library ... 22

3) Setup SensorThings Server (GOST) to add semantics ... 23

Start Demo Applications ... 23

CarFleet - Prosumer .. 23

WeatherService - Producer ... 23

Analytics - Consumer and DataStack ... 23

Stream Hub - Connect the systems ... 24

Track what happens behind the scenes: ... 24

Deployment on a Cluster .. 25

Platform UI .. 25

Starting the platform ... 25

Appendix B: Client Applications .. 25

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 4 / 27

Abbreviations

API Application Programming Interface

CPS Cyber-Physical System

CRUD Create, Read, Update, Delete

DNS Domain Name System

GOST Go-SensorThings

JSON JavaScript Object Notation

OAuth2.0 OAuth 2.0 Authorization Framework

RAMI4.0 Reference Architecture Model Industrie 4.0

REST Representational State Transfer

SSL Secure Socket Layer

TLS Transport Layer Security

URI Universal Resource Identifier

URL Universal Resource Locator

UUID Universally Unique Identifier

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 5 / 27

Executive Summary

This deliverable documents the developments of the Lifecycle Data Management Prototype II. It presents the

second iteration of the Digital Twin Platform that was created to connect “loosely coupled” components (client

applications) to share data with third parties, keeping stakeholder control over subsets of the data by the clients

through customisation. This concept has been implemented by the creation of a data-streaming platform around

the scalable open-source framework “Apache Kafka”, in which each of the “data producer” to “data consumer”

relation is defined by a separate communication “topic”. Kafka Streaming Applications, which can be configured

with additional filter functions, connect publishers and subscribers with each other to exchange the contractually

agreed data streams.

The source code of the prototype is released under a permissive open source license and can be found on the

project-internal GitLab instance (https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt). To provide any

reader of this public deliverable access to the open source code, a fork on GitHub (https://github.com/iot-

salzburg/panta_rhei) has been created that is public and updated regularly.

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt
https://github.com/iot-salzburg/panta_rhei
https://github.com/iot-salzburg/panta_rhei

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 6 / 27

1. Introduction

This report contains the second iteration of a Digital Twin Platform prototype developed in the IoT4CPS project

(as part of Work Package WP5 “IoT Lifecycle Management”, within Task 5.5). Being the successor of public

deliverable D5.5.1, published in July 2019, it contains the advances achieved during the Implementation period

from July 2019 to October 2019.

The goal of the developed Digital Twin concept and prototype is to support scenarios, where several data

suppliers can exchange their live data without additionally storing it in a central data collection point. At the

destination, the data subsets will then again be set into the local context in order to be interpreted correctly.

In this part of the prototype implementation, we concentrate on the aspect of sharing data streams and meta-

data information between CPSs across boundaries of companies and administrative domains. This is especially

important in all use cases of a multi-tenant Digital Twin Platform, where multiple systems of multiple

companies are involved along the value chain. In the final prototype application, we want to demonstrate the

life cycle data management of automotive components in use, with stakeholder control over subsets of the

data and – through customisation – keeping compliance with different regulations regarding privacy and third-

party usage of data. Therefore, we created a simple data model for meta-information about stakeholders

including a management UI to support the multi-tenant access on sensor data streams.

The report on the final prototype (D5.5.3), including data analytics aspects will follow in June 2020.

2. Architecture Overview of the Prototype

In this section, we describe the layered architecture of our Digital Twin Platform prototype. An architectural

overview is shown in Figure 1, which distinguishes between two types of clients of the platform (upper layer),

the application run on a CPS and the end-user interacting with the system for administrative tasks. While the

first one usually directly runs on an embedded system (e.g. within the connected car), the latter one enables

any interaction through a user interface device, such as a web browser or a mobile application. The following

sections describe the single layers of the architecture, from the bottom to the top.

Figure 1 – High-level Component Architecture

2.1 Digital Twin Messaging and Data layer

2.1.1 Streaming Platform with Data Stream Apps (Apache Kafka)

Core functionalities required in Digital Twin Platforms are scalable data streaming and complex event

processing, which has been implemented using Apache Kafka. In the demo setup, Kafka just runs on a single

node. In production environments, however, Apache Kafka can and should be scaled out and distributed

among a cluster of nodes for both performance and fault-tolerance reasons. Beneath the data streaming itself,

Kafka also allows the creation of “Data Streaming Applications” using Kafka Streams1, which can subscribe to

1 Kafka Streams: https://kafka.apache.org/documentation/streams/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 7 / 27

various source data streams, filter, process, or analyse them and return altered data streams back to the Kafka

cluster.

2.1.2 Device Metadata (SensorThings)

Sensors usually have specific metadata, such as the type of observation, the observation property, unit of

measure or any other description of the sensor devices (things) itself. Instead of conveying that data in each

and every data packet delivered for a measurement, this information is managed using an external

SensorThings server. A SensorThings server provides a SensorThings API2 as defined by the Open Geospatial

Consortium (OGC). For the prototype implementation we use a GOST SensorThings server3, running inside

three Docker4 containers (one for the database, one for the service API and one for the dashboard).

2.1.3 Digital Twin Platform Identity Data Model

For managing the basic data within the Digital Twin Platform prototype it requires a simple data model for

creating relations between the single entities. In the data model we define users, companies, clients, streams

and systems. “Systems” is a general term that we use here for grouping single CPSs and service applications

that serve for a specific purpose, e.g., a weather service including weather stations. For identification and

structuring of multiple systems, we propose to use a hierarchical approach according to the RAMI4.0 reference

model, which defines “workcenters” and “stations” below each organisation (or company). In our prototype,

this substructure model is composed of simple strings using the dot-notation know from DNS. A system, which

is owned by a single company, can have multiple clients and multiple data streams. According to the model, a

data stream connects exactly one source to one target system. However, using the data stream

implementation as described in more detail in section 3, flexible many-to-many communication streams are

possible.

In this prototype, for simplicity a local PostgreSQL5 database was used. A production-grade system can also

include more advanced user and identity management, such as OAuth2.06-based authorization servers. The

physical data model is shown below (Figure 2).

2 SensorThings: https://github.com/opengeospatial/sensorthings

3 GOST (Go-SensorThings) is an IoT Platform written in Golang (Go): https://github.com/gost/server

4 GOST: https://www.gostserver.xyz/tutorials-installation-docker/

5 PostgreSQL: https://www.postgresql.org/

6 The OAuth 2.0 Authorization Framework, IETF RFC6749, RFC8252

https://github.com/opengeospatial/sensorthings
https://github.com/gost/server
https://www.gostserver.xyz/tutorials-installation-docker/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 8 / 27

Figure 2 – System Data Model

Note that in our data model we use a n:m connection between companies and users, instead of the usual 1:n

relationship. This enables the users to manage multiple companies, which is useful in cases where e.g. an IT-

Service company should manage data streams for multiple other companies without any IT personnel available.

The same is true for the relation between users and systems, i.e., one user can manage multiple systems and

one system can be managed by different users.

2.2 Digital Twin Service layer

The service layer provides controlled access to the database and implements the standards CRUD operations

on companies, users, systems, clients and streams. In the prototype, the service layer is implemented in Python

and Flask7.

2.3 Application and User Interface layer

As already mentioned, the Digital Twin Platform provides separate interfaces for the users and applications

running on CPSs. The user interface provides simple management functionality (list, add, show, delete) for

companies, systems, data streams and the users itself (including registration, login). The API for the CPS is

implemented in Apache Kafka, clients can either use the Kafka REST API, or directly implement a Kafka

consumer and / or producer. Sample consuming and producing client applications implemented in Python are

provided together with the platform.

3. Demo Use Case

In this section, we describe the main flow of events using screenshots of the prototype according to a demo

use case about connected cars. In particular, the use case involves connected cars of a car rental company

located in Iceland, where cars are enabled to exchange weather and temperature information with each other

and with a central weather service. Before we discuss on the use of the platform in detail, we describe the data

flow in the platform shown in Figure 3.

7 https://palletsprojects.com/p/flask/, https://github.com/pallets/flask

https://palletsprojects.com/p/flask/
https://github.com/pallets/flask

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 9 / 27

Figure 3 – Data Streaming between CPSs

On the left side, the client applications are shown, which are implemented directly in the cars, in some

analytics backend or at a weather service provider. These applications can send (produce) single data objects to

or receive (consume) them from the streaming platform via the service layer. The service layer handles access

control and additionally provides the metadata for the single data objects on request. This can be for example

meta-data information on the sensor, such as the unit of measurement or accuracy of the measured values.

For each system, three separate Kafka topics with a name and three different suffixes are created (“.int”, “.log”

and “.ext”). Once the service layer has been passed, each stream is published to its own topic name using

either the internal (“.int”) or the logging (“.log”) suffix. Internal topics are used for the communication of

applications and CPSs within a single system. Furthermore, a streaming app can subscribe on an internal topic,

combine several data streams to a new one and implement filter rules, e.g. to only get warnings if some

predefined thresholds are passed. In contrast to communication between clients within a single system, the

resulting stream of a stream application is finally forwarded to an external topic of another target system.

Therefore, only stream apps are permitted to publish on external (“.ext”) topics. This means the “ext”-topics of

one system store data from other (external) systems rather than their own data.

The resulting stream will be sent back through the service layer and can be consumed by any authorised

consumer client application that subscribe to that data stream.

3.1 Welcome screen and user registration

After the service has been started, some users need to be registered to be able to use the platform prototype

itself. As shown in Figure 4, the welcome screen contains the basic steps required to start a data stream, an

exemplary illustration of the data flows and the link to its source code repository.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 10 / 27

Figure 4 – Welcome Screen and Introduction

From the welcome screen, the user can use the “register” button for self-registration to the system as shown in

Figure 5. If the user is already registered, he or she can directly navigate to the login.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 11 / 27

Figure 5 – Self-Registration and Platform Login

Once the user is registered and logged in, the user will see an empty dashboard (Figure 6), listing companies,

systems, client applications and data streams accessible by the current user. The user has now the option to

add new instances, which is described in more detail in the next section.

Figure 6 – Initial, empty Dashboard

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 12 / 27

3.2 Company and Systems Management

In this section we show, how to manage companies and systems. In the presented use case the company, users

and systems for the weather service is presented.

For the full demo scenario, a second company for the car rental service (car fleet) needs to be created,

including corresponding users and systems in order to exchange datastreams between multiple systems.

3.2.1 Companies

The first step is to register a new company, which will be the owner of the cyber-physical systems created later.

As shown in the screenshot in Figure 7 below, for demonstration purposes, a company is simply identified by a

top-level domain, a short name and an optional description.

Figure 7 – Register / create companies

A list of all companies that can be managed by the current user is shown in Figure 8, which currently contains

exactly the just registered company. The blue button “manage company” leads to the next screen (Figure 9), in

which other company admins and systems can be added.

Figure 8 – List companies

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 13 / 27

A company admin has the permission to create and delete systems as well as other company admins. Admins

can also delete the selected company.

Figure 9 – Show companies

Systems for CPSs and services within the company can be added using the green “Add System” button. How

systems can be defined is described in the next section.

3.2.2 Systems

In our context, a system is a logical entity that groups together multiple applications and CPSs, which serve a

common purpose. The user can provide its own system identifiers using a unique combination of a workcenter

short-name and station name within the related company. Still, each system will get universally unique

identifier (UUID) for globally unique identification. The notations of workcenter and station are taken from the

RAMI 4.0 reference model. They allow the creation of a logical hierarchical structure within a company (or

enterprise). Having that, system instances can again be assigned and grouped into such structure. The screen

on how to add new systems to the company on the platform is shown in Figure 10 with the example of the

weather service.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 14 / 27

Figure 10 – Add systems to companies

Once a system is created, it has several options that need to be further defined. The overview of a newly

created system is shown in Figure 11, which can contain client applications, stream applications and system

administrators. Similar to companies, systems also have dedicated administrators. System administrators have

the permission to register and manage client applications and streaming applications that are assigned to this

system. One company administrator can assign multiple system administrators for managing their systems.

Client applications can be created by using the “Add Client” button and are used to produce data to and

consume data from the Digital Twin Platform. They are described in more detail in the next section.

Streaming applications can be created by using the “Add Stream” button and are used to connect the selected

system to another system for data exchange. While the selected system is the source system, the other system

will be shown as target system.

Additional system administrators can be invited or assigned by using the “Add Admin” button.

All added clients, streams, admins or even the whole system can be deleted using the corresponding “delete

system” buttons.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 15 / 27

Figure 11 – Show system details (newly registered system)

3.3 Client Applications

A client application denotes a piece of software, deployed as part of a service or connected device (“thing”),

which is intended to communicate with other services or devices. In the use case example, this would be a

connected car, which provides its own measured temperatures including spatiotemporal information to other

cars. In the same time, it may receive external temperature data from other cars or weather stations for the

next few hundred meters along the driving path to increase the safety of the driver.

Before the client application can send or receive data, it needs to be registered within a previously defined

“system”. This can be done using the “Add Client” button. The registration screen for the clients is shown in

Figure 12 for the system “is.iceland.iot-iot4cps-wp5.WeatherService”.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 16 / 27

Figure 12 – Register client applications within systems

When registering such a client application, its name must match with the unique dedicated system entry in the

Digital Twin Platform. Moreover, a name and URI for metadata description has to be provided, as shown in the

configuration of the client in Figure 13 below. In our example, we create a client application for a single

weather station (“weatherstation_1”). Note that in a production scenario a high number of clients can be

added programmatically by directly using the REST-API.

Once a client is created, the screen from Figure 13 will be shown to the user. In addition to the data entered

above, two important information elements are presented. First, a short JSON configuration data structure that

can be used to create the client application itself by copy & paste. Second, if a client application is registered, a

SSL-key will be generated that can also be used by the application. However, the usage of this key by the client

application is not implemented in the current examples but will be added to the third prototype

implementation (D5.5.3).

All access for clients can be revoked by deregistration of the client in the Digital Twin Platform. This can be

achieved by using the “delete client” button.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 17 / 27

Figure 13 – Manage client applications within systems

For the simple creation of an example producer or consumer application in Python, a “DigitalTwinClient” class

is provided in the source code repository, where only the shown config object (Figure 14) needs to be passed as

the only constructor parameter.

config = {"client_name": "car_1",

 "system": "cz.icecars.iot-iot4cps-wp5.CarFleet",

 "gost_servers": "localhost:8084",

 "kafka_bootstrap_servers": "localhost:9092"}

Figure 14 – Client Configuration

Beneath client_name and system id, the client needs a kafka_bootstrap_server to connect as publisher or

subscriber, and an address to a gost_server (SensorThings), which provides the meta-data information for the

sensor data flow (as described in Section 2.1.2). A whole example source code for such client application, which

shows how to produce and consume data to the platform, is also listed in Appendix B: Client Applications.

3.4 Streaming Applications

A streaming application enables the communication between a source and a target system. Once deployed, it

subscribes the internal topic of the specified source system, combines several data streams to a new one and

implement filter rules, e.g. to only get warnings if some predefined thresholds are passed. The resulting stream

is then forwarded to the external topic of the target system. Hereby, these external topics are used to receive

data from, and only from, streaming applications.

In order to create a new stream application within a given source system, a unique name for the stream and a

target system is mandatory. In our example, the source system is the weather service and the target system

will be the whole car fleet of the rental company. Therefore, the stream is simply named “weather2cars”.

This stream will forward data from the source system to the target system. Additionally, a filter logic can be

defined, which can be considered as a description language for selecting and filtering time-series datastreams.

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 18 / 27

The default value is an empty clause like shown in Figure 15, what implies that any data from the source system

is forwarded to the defined target system. Within Prototype II, only this trivial default case is implemented.

Figure 15 - Creating a new stream application.

In Figure 16, the view of the streaming application “weather2cars” is shown. As no filter logic is provided, any

data point from the source system “is.iceland.iot-iot4cps-wp5.WeatherService” is forwarded to the target

system. As depicted by the icon in the column “Status”, the streaming application started up and is running

without errors in the moment this snapshot was created. Within this view, the stream can be also stopped,

restarted and deleted with its configuration.

Figure 16 - View of the streaming application "weather2cars".

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 19 / 27

Finally, Figure 17 shows the finally created system of our demo scenario including three client applications for

connecting CPSs with e.g. the forecast service, two streaming applications and two system administrators. One

streaming applications is to distribute the weather information from the stations to the cars, while the other

one will send all weather information to a central road analytics service for long term investigation of the

weather conditions.

Figure 17 - View on the a system including three client applications and two streaming applications (using

dummy text for system description)

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 20 / 27

3.5 Monitoring and analysing data streams

In most use cases, monitoring and analysing of collected data is a substantial feature of a digital twin platform.

Therefore, we also included an analytics tool stack in the source code, including well-accepted third-party open

source components that:

 Retrieve and store data,

 Visualize data and

 Provide an interactive analytics environment for use-case specific analyses.

In detail, the Elastic Stack8 is used for storing the time-series data and Grafana9 is used for the visualization, as

this combination is well suited for metrical data and is still flexible enough to embed HTML snippets or

interactive 3D graphics using plugins. Data analytics can be deployed in Jupyter10 notebooks, which are browser

applications that run code of various languages and use the rich data science packages provided by the

Anaconda11 project. Figure 18 gives an overview of the tool stack, where the red arrows depict the direction of

the data flow.

To minimize the effort for the setup and help the developer to focus on his or her main task, each component

is “dockerized”, i.e., the installation process including some provisioned configuration is set in a Dockerfile12

that can be deployed using a single command. More information about the setup can be found in Appendix A

and the referred repository.

Figure 18 - The Analytics sample code provides a Data Science toolstack.

8 Elastic Stack: https://www.elastic.co/

9 Grafana: https://grafana.com/

10 Jupyter Project: https://jupyter.org/

11 Anaconda Project: https://www.anaconda.com/

12 Docker: https://www.docker.com/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 21 / 27

4. Source Code and Current Status

The source code of the platform can be found on a GitLab instance that is hosted by AIT13. To provide any

reader of this public deliverable access to the open source code, a fork14 on GitHub has been created that is

public and updated regularly.

Table 1 shows the milestones and the current achievements. The major effort in the next months will be

needed for the milestones “security” and “stream apps”.

Table 1: Current status per milestone.

5. Conclusion

This deliverable documents the status of the Digital Twin Platform Prototype by November 2019. Based on a
proof-of-concept use case it was demonstrated, that the platform already enables user and company
registration, and that users can create client applications for exchanging data via data streaming applications.
Currently, the data model of the data exchanged is still limited and will be targeted in the next iteration of the
implementation, together with the finalisation of the platform security and the streaming applications.

The final implementation of the prototype will be released in the last quarter of the project in August 2020.

13 Gitlab WP5: https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt

14 Fork on Github: https://github.com/iot-salzburg/panta_rhei

Milestone Status

Use-Case Finished

Architecture Finished

Streaming

Capability Finished

Semantic

finished for the use-case, could be

extended for actuators

Demo-Clients Finished

Platform UI

Finished, some UI/UX improvements

are possible

Security

Finished to secure the platform;

secure API for the platform;

communication via SSL/TLS via a

given key

Stream apps

Finished the UI;

basic deployment is finished;

design a filter logic language;

parsing the filter logic

Dissemination Document new features

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 22 / 27

Appendix A. Installation Guide

In this appendix, we provide the current snapshot version of the installation guide. An updated version will be

continuously available within the project-internal GitLab repository15. The final version will also be published on

GitHub. The installation guide includes five subtopics:

 Setup of the Messaging Layer

 Starting of Demo Applications

 Tracking to see what happens behind the scenes

 Deployment on a cluster

 Platform UI

Setup Messaging Layer

1) Requirements

 Install Docker16 version 1.10.0+

 Install Docker Compose17 version 1.6.0+

 Clone the WP5 GitLab repository: https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt

 Install python modules:

pip3 install -r setup/requirements.txt

This is an instruction on how to set up a demo scenario on your own hardware using Ubuntu 18.04. It contains
only the most essential steps without any special procedures for different computer environments. In case of
any installation problems with individual basic software components, we ask you to visit the corresponding
web pages.

2) Setup Apache Kafka and its library

The Datastack uses Kafka version 2.1.0 as the communication layer, the installations is done in /kafka.

sudo apt-get update

sh setup/kafka/install-kafka-2v1.sh

sh setup/kakfa/install-kafka-libs-2v1.sh

optional:

export PATH=/kafka/bin:$PATH

Then, start Zookeeper and Kafka and test the installation:

Start Zookeeper and Kafka Server

/kafka/bin/zookeeper-server-start.sh -daemon

kafka/config/zookeeper.properties

/kafka/bin/kafka-server-start.sh -daemon kafka/config/server.properties

Test the installation

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --list

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic

test-topic --replication-factor 1 --partitions 1

/kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic

test-topic

15 Gitlab WP5: https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt

16 https://www.docker.com/community-edition#/download

17 https://docs.docker.com/compose/install/

https://git-service.ait.ac.at/im-IoT4CPS/WP5-lifecycle-mgmt
https://www.docker.com/community-edition#/download
https://docs.docker.com/compose/install/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 23 / 27

>Hello Kafka

> [Ctrl]+C

/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --

topic test-topic --from-beginning

Hello Kafka

If that works as described, you can create the default topics:

sh setup/kafka/create_defaults.sh

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --list

If multiple topics were generated, everything worked well.

3) Setup SensorThings Server (GOST) to add semantics

docker-compose -f setup/gost/docker-compose.yml up -d

The flag -d stands for daemon mode. To check if everything worked well, open http://localhost:8084/ or view
the logs:

docker-compose -f setup/gost/docker-compose.yml logs -f

Start Demo Applications

Now, open new terminals to run the demo applications:

CarFleet - Prosumer

python3 demo_applications/CarFleet/Car1/car_1.py

> INFO:PR Client Logger:init: Initialising Digital Twin Client with name

'demo_car_1' on 'at.srfg.iot-iot4cps-wp5.CarFleet'

....

> The air temperature at the demo car 1 is 2.9816131778905497 °C at 2019-

03-18T13:54:59.482215+00:00

python3 demo_applications/CarFleet/Car2/car_2.py

> INFO:PR Client Logger:init: Initialising Digital Twin Client with name

'demo_car_2' on 'at.srfg.iot-iot4cps-wp5.CarFleet'

...

> The air temperature at the demo car 2 is 2.623506013964546 °C at 2019-03-

18T12:21:27.177267+00:00

> -> Received new external data-point of 2019-03-

18T13:54:59.482215+00:00: 'at.srfg.iot-iot4cps-wp5.CarFleet.car_1.Air

Temperature' = 2.9816131778905497 degC.

WeatherService - Producer

python3 demo_applications/WeatherService/demo_station_1/demo_station_1.py

python3 demo_applications/WeatherService/demo_station_2/demo_station_2.py

python3 demo_applications/WeatherService/central_service/weather-service.py

Here, you should see that temperature data is produced by the demo stations and consumed only by the

central service.

Analytics - Consumer and DataStack

The Analytics Provider consumes all data from the stack and pipes it into an Elastic Grafana and Jupyter

Datastack.

First, the following configurations have to be set in order to make the datastore work properly:

http://localhost:8084/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 24 / 27

ulimit -n 65536 # Increase the max file descriptor

sudo sysctl -w vm.max_map_count=262144 # Increase the virtual memory

sudo service docker restart # Restart docker to make the changes work

Further information is available on the Elastic Search Website18.

Now it can be started:

sh demo_applications/InfraProvider/start-full-datastack.sh

Wait until Kibana is reachable on localhost:5601

python3 demo_applications/InfraProvider/datastack_adapter.py

Available Services:

 localhost:9200 Elasticsearch status

 localhost:9600 Logstash status

 localhost:5000 Logstash TCP data input

 localhost:5601 Kibana Data Visualisation UI

 localhost:3000 Grafana Data Visualisation UI

 localhost:8888 Jupyterlab DataScience Notebooks

As no StreamHub application runs for now, no data is consumed by the datastack-adapter that ingests it

into the DataStack. Therefore, it is important to start the StreamHub applications as noted in the next section.

Stream Hub - Connect the systems

The StreamHub application can be regarded as hub for the streamed data. Run the built jar file to share data

from the specific tenant to others:

java -jar

demo_applications/streamhub_apps/out/artifacts/streamhub_apps_jar/streamhub

_apps.jar --stream-name mystream --source-system cz.icecars.iot-iot4cps-

wp5.CarFleet target-system at.datahouse.iot-iot4cps-wp5.RoadAnalytics --

filter-logic {} --bootstrap-server 127.0.0.1:9092

If you want to change the streamhub application itself, modify and rebuild the java project in

demo_applications/streamhub_apps.

It is recommended, to start and stop the stream-applications via the Platform UI, that provides the same

functionality as the command line interface.

Track what happens behind the scenes:

Check the created kafka topics:

/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --list

at.srfg.iot-iot4cps-wp5.CarFleet.data

at.srfg.iot-iot4cps-wp5.CarFleet.external

at.srfg.iot-iot4cps-wp5.CarFleet.logging

…

Note that kafka-topics must be created manually as explained in the Setup.

To track the traffic in real time, use the kafka-consumer-console:

/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --

topic at.srfg.iot-iot4cps-wp5.CarFleet1.data

18 https://www.elastic.co/guide/en/elasticsearch/reference/7.2/docker.html#docker-cli-run-prod-mode

http://localhost:9200/
http://localhost:9600/
http://localhost:5000/
http://localhost:5601/
http://localhost:3000/
http://localhost:8888/

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 25 / 27

> {"phenomenonTime": "2018-12-04T14:18:11.376306+00:00", "resultTime":

"2018-12-04T14:18:11.376503+00:00", "result": 50.05934369894213,

"Datastream": {"@iot.id": 2}}

You can use the flag --from-beginning to see the whole recordings of the persistence time which are two

weeks by default. After the tests, stop the services with:

/kafka/bin/kafka-server-stop.sh

/kafka/bin/zookeeper-server-stop.sh

docker-compose -f setup/gost/docker-compose.yml down

If you want to remove the SensorThings instances from the GOST server, run docker-compose down -v.

Deployment on a Cluster

For a production deployment of the messaging system, we recommend to setup the platform in a cluster

environment such as “Docker Swarm” or “Kubernetes”. A setup guide for a Docker Swarm deployment is

available in the Software repository.

Platform UI

The user interface is the recommended way to create system topics, which happens when registering a new

client, and to deploy and stop stream-applications that forwards selected data from one system to another.

Starting the platform

Before starting the platform, make sure postgreSQL is installed and the configuration selected in

server/.env points to an appropriate config in server/config. For instructions on how to install

postgres, various tutorials can be found in the Internet19.

cd server

sudo pip3 install virtualenv

virtualenv venv

source venv/bin/activate

pip3 install -r requirements.txt

sh start-server.sh

The Platform will be available on port 1908.

Appendix B: Client Applications

In the following code snippet both, a subscriber (client.subscribe(…)) as well as a producer client

(client.produce(…)) is implemented. Note that they will usually be separated into two separate threads.

#!/usr/bin/env python3

"""

Demo Scenario: Connected Cars

 CarFleet:

 The connected car wants to enhance it's safety by retrieving temperature data, to warn the driver on

 approaching slippery road sections. As each car has also temperature data that is of interest for other

 cars, it sends this data to the the platform.

19 e.g. https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-18-04

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 26 / 27

 InfraProv:

 The provider of the road infrastructure wants to enhance it's road quality and therefore consumes and analyses

 data.

 WeatherStation:

 stations: The weather stations are conducted by a local weather service provider which provides the data as a

 service.

 service_provider: The weather information provider offers temperature data for it's customers.

"""

import os

import sys

import inspect

import time

import pytz

from datetime import datetime

Append path of client to pythonpath in order to import the client from cli

sys.path.append(os.getcwd())

from client.digital_twin_client import DigitalTwinClient

from demo_applications.simulator.SimulateTemperatures import SimulateTemperatures

Get dirname from inspect module

filename = inspect.getframeinfo(inspect.currentframe()).filename

dirname = os.path.dirname(os.path.abspath(filename))

INSTANCES = os.path.join(dirname, "instances.json")

SUBSCRIPTIONS = os.path.join(dirname, "subscriptions.json")

Set the configs, create a new Digital Twin Instance and register file structure

This config is generated when registering a client application on the platform

Make sure that Kafka and GOST are up and running before starting the platform

config = {"client_name": "car_1",

 "system": "cz.icecars.iot-iot4cps-wp5.CarFleet",

 "gost_servers": "localhost:8084",

 "kafka_bootstrap_servers": "localhost:9092"}

client = DigitalTwinClient(**config)

client.register_existing(mappings_file=MAPPINGS)

client.register_new(instance_file=INSTANCES) # Registering of new instances should be outsourced to the platform

client.subscribe(subscription_file=SUBSCRIPTIONS)

randomised_temp = SimulateTemperatures(t_factor=100, day_amplitude=4, year_amplitude=-4, average=3)

try:

 while True:

 # unix epoch and ISO 8601 UTC are both valid

 timestamp = datetime.utcnow().replace(tzinfo=pytz.UTC).isoformat()

 # Measure the demo temperature

 temperature = randomised_temp.get_temp()

 # Send the demo temperature

 client.produce(quantity="temperature", result=temperature, timestamp=timestamp)

 # Print the temperature with the corresponding timestamp in ISO format

 print("The air temperature at the demo car 1 is {} °C at {}".format(temperature, timestamp))

 # Receive all queued messages of the weather-service and other connected cars and calculate the minimum

 minimal_temps = list()

 if temperature <= 0:

 minimal_temps.append({"origin": config["system"], "temperature": temperature})

 received_quantities = client.consume(timeout=0.5)

 for received_quantity in received_quantities:

IoT4CPS – 863129 D5.5.2 Lifecycle Data Management Prototype II

 PUBLIC

Version V1.0 Page 27 / 27

 # The resolves the all meta-data for an received data-point

 print(" -> Received new external data-point at {}: '{}' = {} {}."

 .format(received_quantity["phenomenonTime"],

 received_quantity["Datastream"]["name"],

 received_quantity["result"],

 received_quantity["Datastream"]["unitOfMeasurement"]["symbol"]))

 # To view the whole data-point in a pretty format, uncomment:

 # print("Received new data: {}".format(json.dumps(received_quantity, indent=2)))

 if received_quantity["result"] <= 0:

 minimal_temps.append(

 {"origin": received_quantity["Datastream"]["name"], "temperature": received_quantity["result"]})

 if minimal_temps != list():

 print(" WARNING, the road could be slippery, see: {}".format(minimal_temps))

 time.sleep(10)

except KeyboardInterrupt:

 client.disconnect()

