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• A demonstrator for automated security testing based on attack patterns has 
been developed as part of the "ICT of the  Future" project IoT4CPS

• The demonstrator named MqttRazzer is a framework for generating random 
tests including security attacks for or via an MQTT broker 

• For further details see
• Sochor, H., Ferrarotti, F., Ramler, R.: An Architecture 

for Automated Security Test Case Generation for MQTT 
Systems. In International Conference on Database and 
Expert Systems Applications (pp. 48-62). Springer, 2020.

• Sochor, H., Ferrarotti, F., Ramler, R.: Automated security 
test generation for MQTT using attack patterns. In 
Proceedings of the 15th International Conference on 
Availability, Reliability and Security (pp. 1-9). ACM, 2020.

Background
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Core Components

1. Test case generation

2. Test execution

3. Test adapter

4. System under test

Architecture Overview
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Test Case Generation

• Open source tool Randoop1

a feed-back directed random 
test generator 

• Randoop uses the test adapter 
to access the MQTT broker

• Config specifies which adapter 
methods are used in 
generating test sequences

• Randoop outputs generated 
sequences as JUnit test cases

Architecture Overview

1 https://randoop.github.io/randoop/
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Test Execution

• Sequences generated by 
Randoop are stored as JUnit 
test cases 

• JUnit test runner is used to 
execute the tests

• Tests exercise the adapter to 
access the MQTT broker

Architecture Overview
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Test Adapter

• API for interacting with an 
MQTT broker in testing

• The API provides

1. Valid MQTT Commands

2. Attacks based on invalid or 
malformed commands and 
command sequences

• A modified Netty lib is used to 
communicate with the broker; 
security checks have been 
removed to allow sending 
malformed/invalid data

Architecture Overview
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System Under Test

• The SUT is an IoT system or 
device accessible via MQTT 
and/or an MQTT broker

• In test generation and 
execution, the SUT is accessed 
via a test adapter

• System specific monitoring 
(e.g. MQTT broker loggin) is 
optionally used to directly 
observe the SUT‘s behavior

Architecture Overview



830.9.2020, Software Competence Center Hagenberg GmbH

Covered scenario: Two clients interacting with a MQTT broker

Example Generated Test Case
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• Sample attacks have been derived from common attack patterns (e.g. CAPEC, CVE)

• Following attacks have been implemented as part of the test adapter

List of Demonstration Attacks

# Description

0 Check if the broker accepts two clients with the same id

1 Invalid length of variable header (+1)

2 Invalid length of variable header (-1)

4 send publish message with payload size of 128MB

5 Subscribe without payload

7 subscribe with invalid wildcard in topic name

8 subscribe with escape sequences in topic name

9 publish with escape sequences in payload

10 publish with wildcards in topic name

11 connect with invalid QoS (Both QoS Bits set -> QoS=3)

13 connect with long client identifier

# Description

14 connect with invalid protocol specifier (protocol="MQQT")

15 connect with invalid protocol version (protocol ver="42")

17 connect with bad will flag combination

18
connect with usr/pwd flag set but without giving 
credentials

19 trigger keep alive (keepAlive=1)

20 connect with big keep alive (keepAlive=INT\_MAX)

22 connect with invalid client identifier

23 subscribe with huge '/' payload

24 connect with empty client identifier

25 connect bad Username (username UTF16 encoded)
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• Required setup for generating and running tests
• JDK 1.8+

• MQTT broker running (default is localhost:1883)

• Test Generation
• Usage: mqttrazzer-gen.bat MethodList Timeout  

• Example: mqttrazzer-gen.bat etc\methods_MqttSingleClientAdapter.txt 10

• Test Execution
• Usage: mqttrazzer-test.bat

Demonstrator: Tutorial
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• Mosquitto Broker running
MQTT v3.1.1 broker

• Java OpenJDK 15

• Current working directory:
c:\work\mqttrazzer

Demonstator: Step 1 – Setup
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Demonstrator: Step 2a – Test Generation

Running mqttrazzer-gen.bat

with list of adapter methods given

in methods_MqttSingleClient.txt 

for a time limit of 10 seconds

Randoop test generator is started

Log output produced by test

adapter from communication with 

MQTT broker (commands sent 

and response received)
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Demonstrator: Step 2b – Test Generation Results

Randoop test generation results; 

summary about explored 

sequences

Source files containing JUnit test 

cases written by Randoop

Class files after successful 

compilation moved to tests\bin
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Demonstrator: Step 3a – Test Execution

Java source files containing JUnit 

test cases written by Randoop

Class files after successful 

compilation ready for execution
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Demonstrator: Step 3b – Test Execution Results

Batch file mqttrazzer-test.bat 
executing JUnit test runner

Successful execution of 

generated tests (i.e. no deviations 

found in regression test run)

Log output showing MQTT 

commands and responses from 

broker; log produced by adapter 

called from executed JUnit tests
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Comparison of behavior of MQTT broker with reference implementation (Mosquitto) 
by running regression tests generated for reference on other broker implementations

Analysis results1: 28 Security relevant issues discovered

Evaluation Results

1 Sochor, H., Ferrarotti, F., Ramler, R.: Automated security test generation for MQTT using attack patterns. In 

Proceedings of the 15th International Conference on Availability, Reliability and Security (pp. 1-9). ACM, 2020.

Mosquitto Moquette ActiveMQ emqx VerneMQ

URL https://mosquitto.org
https://github.com/and
sel/moquette

https://activemq.apach
e.org

https://www.emqx.io https://vernemq.com

Version 1.6.8 0.13 5.15.12 4.0.6 1.10.2

Errors reference >500 219 198 585

Failures reference >300 18 64 0
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