
Laboratory Demonstrator

Automated Security Testing

Rudolf Ramler

Software Competence Center Hagenberg GmbH (SCCH)

rudolf.ramler@scch.at | +43 50 343 872

230.9.2020, Software Competence Center Hagenberg GmbH

• A demonstrator for automated security testing based on attack patterns has
been developed as part of the "ICT of the Future" project IoT4CPS

• The demonstrator named MqttRazzer is a framework for generating random
tests including security attacks for or via an MQTT broker

• For further details see
• Sochor, H., Ferrarotti, F., Ramler, R.: An Architecture

for Automated Security Test Case Generation for MQTT
Systems. In International Conference on Database and
Expert Systems Applications (pp. 48-62). Springer, 2020.

• Sochor, H., Ferrarotti, F., Ramler, R.: Automated security
test generation for MQTT using attack patterns. In
Proceedings of the 15th International Conference on
Availability, Reliability and Security (pp. 1-9). ACM, 2020.

Background

330.9.2020, Software Competence Center Hagenberg GmbH

Core Components

1. Test case generation

2. Test execution

3. Test adapter

4. System under test

Architecture Overview

430.9.2020, Software Competence Center Hagenberg GmbH

Test Case Generation

• Open source tool Randoop1

a feed-back directed random
test generator

• Randoop uses the test adapter
to access the MQTT broker

• Config specifies which adapter
methods are used in
generating test sequences

• Randoop outputs generated
sequences as JUnit test cases

Architecture Overview

1 https://randoop.github.io/randoop/

530.9.2020, Software Competence Center Hagenberg GmbH

Test Execution

• Sequences generated by
Randoop are stored as JUnit
test cases

• JUnit test runner is used to
execute the tests

• Tests exercise the adapter to
access the MQTT broker

Architecture Overview

630.9.2020, Software Competence Center Hagenberg GmbH

Test Adapter

• API for interacting with an
MQTT broker in testing

• The API provides

1. Valid MQTT Commands

2. Attacks based on invalid or
malformed commands and
command sequences

• A modified Netty lib is used to
communicate with the broker;
security checks have been
removed to allow sending
malformed/invalid data

Architecture Overview

730.9.2020, Software Competence Center Hagenberg GmbH

System Under Test

• The SUT is an IoT system or
device accessible via MQTT
and/or an MQTT broker

• In test generation and
execution, the SUT is accessed
via a test adapter

• System specific monitoring
(e.g. MQTT broker loggin) is
optionally used to directly
observe the SUT‘s behavior

Architecture Overview

830.9.2020, Software Competence Center Hagenberg GmbH

Covered scenario: Two clients interacting with a MQTT broker

Example Generated Test Case

930.9.2020, Software Competence Center Hagenberg GmbH

• Sample attacks have been derived from common attack patterns (e.g. CAPEC, CVE)

• Following attacks have been implemented as part of the test adapter

List of Demonstration Attacks

Description

0 Check if the broker accepts two clients with the same id

1 Invalid length of variable header (+1)

2 Invalid length of variable header (-1)

4 send publish message with payload size of 128MB

5 Subscribe without payload

7 subscribe with invalid wildcard in topic name

8 subscribe with escape sequences in topic name

9 publish with escape sequences in payload

10 publish with wildcards in topic name

11 connect with invalid QoS (Both QoS Bits set -> QoS=3)

13 connect with long client identifier

Description

14 connect with invalid protocol specifier (protocol="MQQT")

15 connect with invalid protocol version (protocol ver="42")

17 connect with bad will flag combination

18
connect with usr/pwd flag set but without giving
credentials

19 trigger keep alive (keepAlive=1)

20 connect with big keep alive (keepAlive=INT_MAX)

22 connect with invalid client identifier

23 subscribe with huge '/' payload

24 connect with empty client identifier

25 connect bad Username (username UTF16 encoded)

1030.9.2020, Software Competence Center Hagenberg GmbH

• Required setup for generating and running tests
• JDK 1.8+

• MQTT broker running (default is localhost:1883)

• Test Generation
• Usage: mqttrazzer-gen.bat MethodList Timeout

• Example: mqttrazzer-gen.bat etc\methods_MqttSingleClientAdapter.txt 10

• Test Execution
• Usage: mqttrazzer-test.bat

Demonstrator: Tutorial

1130.9.2020, Software Competence Center Hagenberg GmbH

• Mosquitto Broker running
MQTT v3.1.1 broker

• Java OpenJDK 15

• Current working directory:
c:\work\mqttrazzer

Demonstator: Step 1 – Setup

1230.9.2020, Software Competence Center Hagenberg GmbH

Demonstrator: Step 2a – Test Generation

Running mqttrazzer-gen.bat

with list of adapter methods given

in methods_MqttSingleClient.txt

for a time limit of 10 seconds

Randoop test generator is started

Log output produced by test

adapter from communication with

MQTT broker (commands sent

and response received)

1330.9.2020, Software Competence Center Hagenberg GmbH

Demonstrator: Step 2b – Test Generation Results

Randoop test generation results;

summary about explored

sequences

Source files containing JUnit test

cases written by Randoop

Class files after successful

compilation moved to tests\bin

1430.9.2020, Software Competence Center Hagenberg GmbH

Demonstrator: Step 3a – Test Execution

Java source files containing JUnit

test cases written by Randoop

Class files after successful

compilation ready for execution

1530.9.2020, Software Competence Center Hagenberg GmbH

Demonstrator: Step 3b – Test Execution Results

Batch file mqttrazzer-test.bat
executing JUnit test runner

Successful execution of

generated tests (i.e. no deviations

found in regression test run)

Log output showing MQTT

commands and responses from

broker; log produced by adapter

called from executed JUnit tests

1630.9.2020, Software Competence Center Hagenberg GmbH

Comparison of behavior of MQTT broker with reference implementation (Mosquitto)
by running regression tests generated for reference on other broker implementations

Analysis results1: 28 Security relevant issues discovered

Evaluation Results

1 Sochor, H., Ferrarotti, F., Ramler, R.: Automated security test generation for MQTT using attack patterns. In

Proceedings of the 15th International Conference on Availability, Reliability and Security (pp. 1-9). ACM, 2020.

Mosquitto Moquette ActiveMQ emqx VerneMQ

URL https://mosquitto.org
https://github.com/and
sel/moquette

https://activemq.apach
e.org

https://www.emqx.io https://vernemq.com

Version 1.6.8 0.13 5.15.12 4.0.6 1.10.2

Errors reference >500 219 198 585

Failures reference >300 18 64 0

Projectpartner

Thank you!

The IoT4CPS project is partially funded by the “ICT of the Future” Program of the FFG and the BMK.

For further information please contact:

Rudolf Ramler

rudolf.ramler@scch.at

Software Competence Center Hagenberg Gmbh,
Austria, https://www.scch.at

