

This database contains a list of all results generated by partners within the scope of IoT4CPS. It is intended as a source for external partners to utilize the project outcomes. The latest version of this document can be found on http://iot4cps.at If you have any general questions concerning the project IoT4CPS, please contact the project lead Mario Drobics (mario.drobics@ait.ac.at). For specific questions concerning the mentioned deliverables, kindly approach the specific contact person directly.

Titel	Description Upgray majoranting MEE based on "Misor Editor Encryption and Applications to	Source	Туре	Licence	Deliverable	Demonstrator	Contact Person (Name)	Contact Person (eMail)	Partners involved	Comments
Bloom Filter Encryption from	· · · · · · · · · · · · · · · · · · ·	https://github.com/sebastina							AIT Austrian Institute of	
Boneh-Franklin IBE OpenSSL with fs-ORTT key	Striecks (EC'2018) Integration of BFE library in OpenSSL to provide an efficient Forward-secret zero	s/bfe-bf https://github.com/sebastina	Software	Free-to-use			Sebastian Ramacher	sebastian.ramacher@ait.ac.at	Technology AIT Austrian Institute of	
exchange	round-trip time key exchange in TLS 1.3.	s/openssl-bfe	Software	Free-to-use			Sebastian Ramacher	sebastian.ramacher@ait.ac.at	Technology	
	Analytical Toolbox for Online Anomaly Detection. This includes: [(1) Classical									
	and Deep Neuronal Network based models for anomaly detection, and I(2) a								CCCII Coftwara Compatana	
Online Anomaly Detection	software platform to perform online anomaly detection and learning.		Software	Protected	D4.3.2;#26		Christian Lettner	christian.lettner@scch.at	SCCH Software Competence Center Hagenberg	
Concept for secure distance	This paper describes a concept for secure distance estimation using coupled	Overcoming the Distance								
estimation using coupled	fields. Differently from time-of-flight-based methods, this method is resilient to	Enlargement Fraud with								Paper
fields.	the distance enlargement fraud.	Wireless Power Transfer	Document	Free-to-use	D3.3;#17		Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	
	This paper describes an efficient and collaborative single-anchor localization	E-SALDAT: Efficient Single-								_
Single-Anchor Localization Approach: E-SALDAT	approach called E-SALDAT. This approach relies on nodes using two spaced antennas and a magnetometer. We evaluated its effectiveness via simulations.	Anchor Localization of Dual- Antenna Tags	Document	Free-to-use	D3.4;#18		Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	Paper
Approach L chilbri	This paper presents a comparison between the angle-of-arrival performances of		Bodament	1100 10 400	50.1,1120		Loo Bolloi	toomappoottor@tagraziat	10 0102 111	Paper.A URL will be provided
Evaluation of BLE and UWB-	two ubiquitous technologies in the field of indoor localization, namely Bluetooth									once the paper is available
based AoA for accurate	Low Energy (BLE) and Ultra-Wideband (UWB). Our experiments show that UWB		_		DE 4.0 #05				TU 0 TT	on IEEExplore.
indoor localization	is, in general, more accurate and precise than BLE.		Document	Free-to-use	D5.4.2;#35		Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	raper. A lilik will be provided
JiT: Method to increase availability in embedded	This papers describes a method to increase availability in COTS redundant systems. The basic approach consists in verifying errors in memory which were									once the paper is available on IEEExplore.
redundant systems	overwritten before causing a failure.		Document	Free-to-use			Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	on recexplore.
	This simulator implements the localization method E-SALDAT, as well as two									
	existing competitors. It was coded in Python and enables the user to easily									Internal prototype.
Simulator - E-SALDAT	configure simulation parameters and error models for specific devices. I his parser modifies a Cortex-M3 Assembly code introducing JII. It is suitable		Software	Protected	D3.4;#18		Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	
	for availability-critical applications. The code can be easily ported to different									Internal prototype.
JiT parser	CPU architectures and/or compilers.		Software	Protected			Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	
Circulator LIMD DCC has a	based distance estimation using signal strength instead of time-of-flight									Tutamal mustations
Simulator - UWB RSS-based distance fraud detection	measurements. It accounts for measurements imperfections in the distance estimation using existing models.		Software	Protected	D7.3;#48		Leo Botler	leo.happbotler@tugraz.at	TU Graz - ITI	Internal prototype.
More Efficient Bloom Filter	A more efficient Bloom-Fitter Encryption (BFE) scheme with shorter cipnertexts	https://eprint.iacr.org/2018/			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				AIT Austrian Institute of	To be published in Journal of
Encryption	building on the work by Derler, Jager, Slamanig, and Striecks, for more efficient low-latency key exchange.	199	Document	Free-to-use	D3.6.2;#21		Christoph Striecks	Christoph.Striecks@ait.ac.at	Technology	Cryptotology.
	Puncturable Encryption (DFPE) scheme, to have a more scalable encryption								<u> </u>	
Dual-Form Puncturable	scheme with fine-grained access control and strong security guarantees such as	https://eprint.iacr.org/2019/	<u>/</u>						AIT Austrian Institute of	Currently in submission.
Encryption	forward secrecy.	912	Document	Free-to-use	D3.6.2;#21		Christoph Striecks	Christoph.Striecks@ait.ac.at	Technology	
	A post-quantum secure BFE instantiation from identity-based cryptography									A I - I - I - A CI A CDVDT
Post-Quantum Secure Bloom	techniques. Furthermore, we are able to reduce the decryption error generically present in many only weakly secure post-quantum key encapsulation									Accepted at ASIACRYPT 2020.
Filter Encryption	mechanisms from the literature and show strongly secure variants thereof.		Document	Free-to-use	D3.6.2;#21		Christoph Striecks	Christoph.Striecks@ait.ac.at	_Unknown	
	confidentiality, authenticity and integrity for secure communication in IoT									
	applications.									
	This overview also includes a discussion of the typical APIs that cryptographic									
	libraries offer users and are used during the National Institute of Standards and									
	Technology (NIST) competitions to standardize the post-quantum secure digital									
	signature, public-key encryption and key exchange schemes as well as lightweight authenticated encryption schemes.									
	For secure implementations on both on the software as well as the hardware side, this deliverable introduces guidelines and recommendations for									
	implementing cryptographic schemes. For the software side, those guidelines									
	focus on the design of the APIs of cryptographic libraries to make them easily									
Guidelines and	accessible to application developers, but also to ensure their correct usage. On the hardware side, the deliverable introduces guidelines for the secure									
	e implementation of lightweight symmetric encryption algorithms on Field								AIT Austrian Institute of	
of cryptography to build	Programmable Gate Arrays (FPGAs), so that protocols for secure communication		Document	Unknown	D2 E+#10		Sabactian Damachar	cohaction ramachar@ait as at	Technology;#SBA	
industrial sensor and control	can also be deployed on resource-constrained devices and legacy hardware.		Document	_Unknown	D3.5;#19		Sebastian Ramacher	sebastian.ramacher@ait.ac.at	Research;#TU Graz - IAIK	
networks: Challenges and										
issues in a real	Conference Deman 2000 OF It IFFF I. I	haten as I Berry and the second	4							
implementation for a smart production use-case	Conference Paper 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)	https://ieeexplore.ieee.org/cocument/9211995	Document	Free-to-use			Franz Dielacher	Franz.Dielacher@infineon.com	Infineon	
,	related to connectivity issues in Industry 4.0. It discusses challenges and	,								
.	limitation on the application of wired and wireless communication technologies									
Report on the applicability of tools, methods and models	f for secure connectivity in smart manufacturing environments. The main IoT4CPS connectivity demonstrators that include AVL's Device Connect, X-Net									
	s Virtual Factory and Infineon's Device Application for Wireless Industrial									To be published
related to connectivity issues	s virtually actory and immedit is bevice Application for wheless industrial				D7.2;#47				AVL;#Infineon;#X-Net	•

© Copyright 2020, the Members of the IoT4CPS Consortium

	This deliverable describes all ongoing activities in the context of solutions for									
	secure and reliable V2X communications. Beyond of that examples of hardware									
	for implementation are included. In detail, D6.2 includes the IoT4CPS V2X connectivity use-case and connectivity requirements and challenges for									
	autonomous & connected vehicles. State-of-the-art V2X connectivity									
	technologies and the evolution of 3GPP Standardization for V2X connectivity are									
Applicability of solutions for	discussed in this report. Finally, 5G NR Radio Access Networking and Wireless									confidential
secure and reliable V2X	Infrastructure HW models specifications, recommendations and guidelines for									
communications vviretess connectivity	secure and reliable V2X communications are presented.		Document	Protected	D6.2;#42		Franz Dielacher	Franz.Dielacher@infineon.com	Infineon;#NOKIA	
Requirements and										not published
Challenges in Industrial IoT										
Applications	Master Thesis Adeel Ahmed		Document	Protected			Franz Dielacher	Franz.Dielacher@infineon.com	Infineon	
and Challenges for mission										not published
critical Industrial IoT										
Applications	Master Thesis Muhammad Arslan Ali		Document	Protected			Franz Dielacher	Franz.Dielacher@infineon.com	Infineon	
	subjective expert judgment. ThreatGet helps you innovate this expensive and									
	subjective process by automating the analysis and formalizing threat information. Its analysis results are reusable and all mitigations and design									
	decisions are traceable through the development process. ThreatGet helps									
	saving cost and due to the updatable threat catalogue the analysis stays up-to-								AIT Austrian Institute of	
ThreatGet	date automatically.	https://www.threatget.com/	Software	Protected	D3.7;#22		Cristoph Schmittner	Christoph.Schmittner@ait.ac.at	Technology	
	The Model-based Security Requirement Management Tool (MORETO) serves a									
	tool for security requirements analysis, allocation, and management using									
	modelling languages such as SysML/UML. MORETO is an Enterprise Architect								AIT Austrian Institute of	
MORETO	(EA) plugin for managing the IEC 62443 security standard.		Software	Protected	D3.7;#22		Cristoph Schmittner	Christoph.Schmittner@ait.ac.at	Technology	
	APIs are among reasons for frequent developer-induced errors in applications									
	that subsequently lead to security incidentsWe address this problem by									
Counto ADI Cuidalina	extensively examining cryptographic APIs with regards to their usability and		Doormant	Eroo to	D2 F.#10		Katharina Pfeffer	VDfaffar@aba waaareb arr	CDA Doccorch	
Crypto API Guidelines	extract guidelines for improvement. The SB1-connected virtual factory consists of a database (SB1-Core) at the		Document	Free-to-use	D3.5;#19		Katharina Ptetter	KPfeffer@sba-research.org	SBA Research	
	machine manufacturer, several VPN hubs (SBI-HUB) also from the machine									
	manufacturer and the gateways (SBI-Box) for the machine user. The SBI-Core									
	ist the central database that manages the SBI-System. Among other things, it									
	manages and provides the SBI-Hubs, SBI-Boxes, connected machines, technicians, audit logs, firewall templates and rules for the SBI-Boxes. The task									
	of the SBI-Hubs is to coordinate the operation of a connection between the									
	service technician, the machine manufacturer or the manufacturer of machine									
	components and the machines. The SBI-Boxes set up at the end user take over									
	several functions. They are primarily used as a gateway to the connected				DT 4 "40	Security by Isolation proof o			V.N #0.1.1	
SBI connected virtual factory	machines. In addition, they can act as a firewall with additional functions and The demonstrator is designed to transfer digital content from de-centrally		Hardware	Limited-use	D7.4;#49	concept;#5	Nikolaus Dürk	nd@x-net.at	X-Net;#Salzburg Research	
	located data sources into IoT products in a secure and customised way. It									
	makes use of secure communication protocols, single encryption and quality									
	control mechanism to take the recording of data carrier to a completely new									
	level. Quality control mechanism avoid errors during production or in the									
CDI floob recording	matching of data to the products.					Coourity by Toolation proof o	£			
SBI flash recording demonstrator	With the combination of different tools and methods like authentication, encryption, access control, remote access, validation and matching processes,		Hardware	Limited-use	D7.4;#49	Security by Isolation proof o concept;#5	r Nikolaus Dürk	nd@x-net.at	X-Net	
	An open source platform for IoT lifecycle data streaming and metadata	https://github.com/iot-	Tiaraware	Lillited d3c		# WP5-Digital Twin Software	Wikotaus Burk	ndex net.at	X NCt	
Digital Twin Stack	management for Digital Twins	salzburg/panta_rhei	Software	Free-to-use	D5.5.3;#38	Demonstrator;#2	Felix Strohmeier	felix.strohmeier@salzburgresearch.at	Salzburg Research	
	network topologies. The IoT Discovery Tool supports setups with Ethernet (IPv4									
	and IPv6), LoRa, and Bluetooth based communication by default, but due to its									
L-T Discount of	flexible architecture additional scanner and analyzer modules can be added very		Cath	Duntant	D4 F-#00		Hadha (Mall		January V. Dr.	
IoT Discovery Tool	easily. Demonstrates the application range of the 101 Discovery Tool and that		Software	Protected	D4.5;#29		Heribert Vallant		Joanneum Research	
Laboratory demonstrator of	automated network mapping of a production site can contribute to obtain an									
reliable IoT discovery and	authentic view of the actual network structure and connected equipment at any		Hell -	11.1	D4.5. #00		Handle CV U		January 11 D	
classification	time Novel approacnes for formally analyzing hardware, protocols, system		_Unknown	_Unknown	D4.5;#29		Heribert Vallant		Joanneum Research Joanneum Research;#SBA	
	architecture as well as test case generation to ensure a secure connection and								Research;#Siemens;#TU	
Functional and formal checks	cooperation of IoT in cyber physical systems.		Document	_Unknown	D4.2;#24		Heribert Vallant		Graz - IAIK;#TU Wien	
· · · · · · · · · · · · · · · · · · ·	This deliverable looks into two aspects of IIoT usecases. First, integrity and									
tools, methods and models	authenticity checks of complex systems via RoT architectures to achieve									
related to traceability of	traceability through efficient and trustworthy identification and authentication of									
components and systems throughout lifetime	pre-provisioned devices are investigated. Second, modern localization techniques leveraging new UWB technology are highlighted.		Document	Protected	D7.3;#48		Mario Lamberger	mario.lamberger@nxp.com	TU Graz - ITI	
oagnout mounto	Framework for automated security testing using random test case generation		Dodinont		57,0,1170		. 10.10 20111001501		. C GIVE III	
	guided by attack patterns. The framework includes a demonstrator for security									
	testing of MQTT-based IoT applications (MqttRazzer). Running the									
	demonstrator on popular MQTT broker implementations (Mosquitto, ActiveMQ,					Laboratory demonstrator of				
Automated Security Testing	etc.) revealed more than 20 security bugs! Contact rudolf.ramler@scch.at for		0.1:	D	D4.4.4.4.05	automated testing final	D dates		SCCH Software Competence	
for MQTT	details on how to apply MqttRazzer to your application.		Software	Protected	D4.4.1;#27	release;#7	Rudolf Ramler	rudolf.ramler@scch.at	Center Hagenberg	ıntemat prototype.
	The recommender system is intended to suggest a feasible combination of									
			0.5	D	D0 4 #45 #55 5 ***				0.	
dependable IOT applications	specifications.		Software	Protected	D3.1;#15;#D3.2;#16		Lukas Krammer	lukas.krammer@siemens.com	Siemens	

© Copyright 2020, the Members of the IoT4CPS Consortium

Guidelines for Implementin	g								
Cryptographic Algorithms in	A short collection of best practices to consider when implementing								
Hardware	cryptography in programmable logic.		Document	Free-to-use	D3.5;#19	Martin Matschnig	martin.matschnig@siemens.com	Siemens	
	constrained FPGA device. Here the Dynamic Partial Reconfiguration feature of	g -							тптетнат ргототуре.
Dynamically Exchangeable	modern FPGAs is used to implement exchangable checkers for random								
Runtime Checkers in HW	numbers as an example.		Software	Protected	D4.2;#24	Martin Matschnig	martin.matschnig@siemens.com	_Unknown	
Nullillie Checkers III I IVV	Conference Publication about research results on watermarking for protection of		Joitwale	Flotected	D4.2,#24	Martin Matsching	martin.matsching@siemens.com	_OHKHOWH	
	low level sensors								
	Abstract:								
	Low-data rate networks typically cannot afford the overhead entailed with								
	security measures because of lack of bandwidth. In this paper we propose a								
	method for embedding digital watermarks in LoRaWAN based sensor systems.								
	With the presented approach, the transmitted messages themselves do not								
	need to be modified. Rather, the inter-packet interval between individual								
	packets is used as a side-channel to carry the security-relevant information. We								
	first examine the specific characteristics of LoRaWAN which are typical also for								
	similar low-data rate wireless networks and then present a feasible, lightweigh	t							
	approach for the generation of the digital watermarks. Subsequently, we								Published via IEEE. Terms
	analyze first simulation results of two different differential methods for the								and conditions of use
Side-Channel Watermarking	g watermark implementation.								according to IEEE explore
for LoRaWAN Using Robust		https://doi.org/10.1109/ETF							
Inter-Packet Timing	Published in:	A46521.2020.9211875	Document	Limited-use	D9.4;#58	Albert Treytl	albert.treytl@donau-uni.ac.at	Donau-University Krems	
	This test-bed for industrial application of watermark-based security measures								
	contains:								
	a) A Phyton-based simulation environment to evaluate properties of watermark	S							
	embedded both in sensor data as well as in side-channels. This environment								
	allows investigations of watermark-based security measures in sensor								
Simulation environment and	d networks.								
LoRa testbed for watermark	c- b) A proof-of-concept implementation using LoRa and side-channel-based								
based security for sensor	watermarks for measurements in LP/WAN technologies to interconnect remote							_Unknown;#Donau-	
connection	sensors in highly distributed industrial environments but also other applications	5	Software	Protected	D3.6.2;#21	Albert Treytl	albert.treytl@donau-uni.ac.at	University Krems	

© Copyright 2020, the Members of the IoT4CPS Consortium