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1.	SUMMARY
The cyber-threat landscape associated with IoT is diverse, developing rapidly and has enormous implica-
tions for the security of IoT enabled cyber physical systems. The integration of resource-constrained IoT  
devices with the global Internet makes many traditional security analysis techniques inapplicable. There-
fore, novel approaches for formally analyzing hardware and protocols, generating test cases, intrusion and 
threat prevention, in-situ device and anomaly detection technologies are needed to overcome this issue. 
This whitepaper describes the IoT4CPS approach to enable safe and secure IoT-based applications for 
automated driving and for smart production, addressing strategic security assurance and security during 
operation:

 	 •	 	It shows the use of formal hardware property checks in order to provide security on basic building
		  blocks of components at the network layer. 
 	 •	 Describes the formal verification of side-channel protected hardware implementation, which resulted
		  in the first formally verified AES Substitution-box design that requires only two random bits for the
		  initial sharing of its inputs and requires no online randomness to achieve first-order security in the
		  probing model.
 	 •	 	Furthermore, hardware apps and the use of dynamically exchangeable runtime checkers as hardware
		  apps, in which several functions were implemented, are described. 
 	 •	 	Shows a threat modelling approach based on the STRIDE model with an extended template model
		  tailored for the IoT4CPS project. 
 	 •	 	Demonstrates automated security test generation. and specific penetration testing based on a threat
		  model.
 	 •	 Also, the human aspects in automated model checking of security protocols were addressed by
		  symbolic model checking where the formal verification of human errors as well as usable symbolic
		  model checking for engineers were evaluated. 
 	 •	 Outlines machine-learning techniques to detect anomalies at the log file, network communication and
		  hardware level. 
 	 •	 A reliable IoT device classification and network discovery at runtime, to outline the network‘s 
		  structure and to reveal weak spots in today‘s networks, makes a further contribution to the
		  comprehensive security approach of IoT4CPS.
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2.	CHALLENGE
The digitalization and increasing connectivity 
of (critical) cyber-physical objects enable the 
development of new applications but also leads 
to new safety & security related requirements in 
the design, testing, production and operation of 
these systems with resource constrained  
devices. This raises the need for novel approa-
ches for formally analyzing hardware, protocols 
and system architecture as well as generating 
test cases. Besides these strategic security as-
surance aspects, also security during operation 
has to been accomplished by taking into account 
emerging threats.
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Figure 1: Challenges appearing with the digitalization and increasing
connectivity of critical cyber physical systems.
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An important point is also the interaction between newly developed security engineering processes and 
existing safety engineering processes. As example IEC TC65 WG20 “Industrial-process measurement, con-
trol and automation – Framework to bridge the requirements for safety and security” develops guidelines 
for the interaction between safety and security in the industrial domain.
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Identified security  
measures
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Figure 2: IEC TC65 WG20 “Industrial-process measurement, control and automation – Framework to bridge the requirements for safety and security’’
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2.1.	 Automated Driving 

The importance of security and in particular its interdependen-
cies with safety has been impressively demonstrated in July 
2015 by a so called white hat attack, research-based hackings 
to discover vulnerabilities, which were applied via a remote 
attack on a Jeep. Black hat attacks are attacks triggered by  
cyber-criminals to cause security and safety issues respecti-
vely request ransom money. In 2018, black hat attacks have 
exceeded the incidents discovered by white hat hackers.  
Therefore, increasingly fast and continuously updated veri-
fication and analysis methods are needed to ensure security 
over the entire lifetime of a car (Figure 3).

2.2.	 Smart Production / I4.0

Industry 4.0 comes with the promise of increased efficiency 
and numerous new services and business models as a result of 
highly interconnected and thus more dynamic control and pro-
duction systems. Sensors and numerous small computational 
components in industrial networks will become mainstream for 
every step of the industrial production process and will trans-
form from local Operational Technology networks to (I)IoT 
connections and usage of 5G. 

This in turn will allow connecting production to logistics,  
customers to products on the shop floor, and robots and wor-
kers to each other. Since industrial systems stay in the field for 
long periods (several years to decades), the security margins 
are expected to be reduced over time. Therefore, there is a 
need for updatability and resilience to recover some baseline 
functionality in case a system is compromised. Furthermore, 
several layers of hardware and software security and isolation 
will be required to keep security manageable since availability and safety are of high importance in indust-
rial applications. The move towards a more consistent security approach for (I)IoT requires proper security 
assurance and standardized ways and procedures to evaluate the security of solutions.
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Ensured security  
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Figure 3: Fast and continuous updated verification and
analysis methods to ensure security over the entire 
lifetime of a car is needed

1 Greenberg, Andy. „Hackers remotely kill a jeep on the highway—with me in it.“ Wired, 21 July (2015)  
2 https://62a.61a.myftpupload.com/wp-content/uploads/2018/12/Black-Hat-versus-White-Hat-Cyber-Attacks-Courtesy-Upstream-Security.png?ti
  me=1597236976
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Traditional verification and analysis techniques 
for hardware, software and networks cannot be 
applied directly in the two use case domains of 
automated driving and smart production, as it 
would not fully meet the security requirements 
of upcoming dynamic IoT setups. Therefore, 
IoT4CPS develops a full set of approaches to 
assure security by both formal and empiric 
methods to detect anomalies and uncover  
vulnerabilities at different system levels  
(Figure 4).

3.1.	 Protection Profile 

While the recent cybersecurity guidebook for 
cyber-physical vehicle systems (SAE J3061) 
focuses on integrating cybersecurity in auto-
motive processes, it falls short in addressing 
and enumerating threats and their mitigation 
strategies. An open discussion of these threats 
and mitigation strategies would greatly redu-
ce the overall automotive security risk and a 
Common Criteria (CC) approach could be a tool 
to structure such a discussion.

3.2.	 Formal Verification of Side-Channel 
Protected Hardware Implementation

Side-channel and fault attacks are severe  
threats against cryptographic keys that are used 
in IoT devices to provide security. A central 
challenge when implementing countermeasures against these attacks is to verify that this implementation is 
correct and provides the desired level of protection. A standard approach is to prototype a design, to do actual 
measurements and analyses of the side-channel leakage. However, this is a very time consuming and in-com-
plete approach, as testing is done for a specific attack setup and analysis technique. The recent progress uses 
formal methods to show security properties of hardware implementations of countermeasures like masking. 
Such approaches allow verifying the security of implementations at design time and providing precise security 
bounds. Formal verification is also an established method of analyzing communication protocols.

3.	CURRENT STATUS
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Figure 4: The IoT4CPS approach
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3.3.	 Hardware Property Checks

The interconnectivity between several devices has raised security issues in the IoT, especially the network 
layer. The security issues in network layers include information stealing, communication channel jamming, 
spoofing, denial-of-service, etc. Traditionally, these security issues are addressed at the application layer,  
protocol layers, or system level. However, these techniques cannot ensure the trustworthiness of each 
component. For example, in the case of compromised hardware, i.e., a small piece of hardware that per-
forms a security attack when it gets a trigger, known as Hardware Trojan (HT), these traditional techniques 
cannot guarantee the privacy of information. 

3.4.		 Dynamically Exchangeable Runtime Checkers in HW

Software Apps are available for almost any modern mobile device such as Smartphones or Tablets. These 
small programs can individually enhance the default functionality of the device on demand.  Apps can 
be purchased and installed via an App-Store that is maintained by a service provider. These well-known 
and widely accepted concepts of the mobile communication domain are increasingly introduced to other 
sectors such as Automotive, Industrial Control and Automation, where more stringent safety and security 
requirements need to be considered. Especially in systems where battery runtime is of less importance, 
reconfigurable hardware devices are integrated into many cases. FPGAs (Field Programmable Gate Arrays) 
offer great flexibility with respect to application openness, since they can be reconfigured on-the-fly during 
runtime. Latest FPGA products offer the possibility to even exchange only portions of the device while the 
rest of the system continues its operation without interference.

The concept of Hardware Apps extends standard Software Apps with hardware accelerators instantiated 
within reconfigurable FPGA devices. Consequently, this new kind of App consists of two parts, both availa-
ble via App-Store:

	 •	Software App
	 •	Hardware configuration (FPGA bit stream suitable for partial reconfiguration)Hardware Apps are
		  applicable wherever spare FPGA resources are available in order to accelerate SW-Apps or simply
		  to offload the CPU.

3.5.	 Threat Modelling

There are different tools and techniques of threat modelling available (Figure 5), covering different aspects, 
such as data, data flow, application and assets, orientated on the risk or impact, respectively different 
application areas like software engineering or system architectures. Process Flow Diagrams are particularly 
useful for identifying threats of applications or IT architectures and can help software developers, software 
testers, as well as system architects and cyber security experts to mitigate threats during the development 
process.
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Figure 5: Threat Modelling Techniques

Data Flow Diagrams, which are created from an 
attacker‘s perspective, provide operational thre-
at models of the infrastructure, which provide a 
better view of the entire attack surface and are 
typically used within the DevOps lifecycle. 

3.6.	 Testing

Testing is one of the most widely practiced fault-
finding approaches. In testing, the system is 
executed with test input and the observed result 
(i.e., output and system behavior) is analyzed and 
compared to the expected result. Testing has 
been adopted for finding security faults in the 
most common form of penetration testing and 
fuzzing. In penetration testing, an expert performs a simulated attack of the system under test to reveal 
weaknesses and security loopholes. Since pen testing is a manual approach and the simulated attacks are 
„handcrafted“, it is limited by time and human resources. 

In contrast, fuzz testing is a fully automated approach. Invalid input is generated and fed to the system 
under test to trigger crashes due to implementation weaknesses that can be exploited. Fuzzing has gained 
considerable attention since the increasing availability of computing power has enabled this testing  
approach to reveal many security issues in popular applications, operating systems, libraries, device drivers 
etc. The inherent limitation of fuzzing is that the type of faults that can be detected is mostly restricted to 
crashes. Many other critical security issues such as information leakage, unauthorized access, data corrup-
tion are not automatically detectable. Furthermore, with IoT/IIoT the complexity of the system under test 
can rapidly increase with the consequence that fuzzing may get stuck at the interface layer and the  
approach fails to test the components located in the deeper layers of the IoT system.

3.7.	 Human Aspects

In order to obtain secure cryptographic protocols for CPS, human factors must be taken into account.  
Ultimately, it is the human who is responsible to design, deploy, use, and maintain these systems. Attackers 
commonly target humans operating protocols instead of machines since the former are more error-prone. 
Therefore, humans represent a weak point which, if left unattended, can have a negative impact on all other 
parts of the system. However, it is challenging for CPS protocol designers to consider possible human errors 
in different environments and understand how they play together with the broad threat landscape surroun-
ding the IoT ecosystem. In general, the security analysis of IoT protocols is a hard task, as vendors often 
react quickly on market demands and frequent code changes are required. Moreover, many different types 
of adversaries must be considered, depending on the deployment environment. 
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Symbolic model checking is a useful approach for automatically detecting security flaws in cryptographic 
protocols, which has been recently used to uncover security vulnerabilities in several deployed security 
protocols (e.g., MQTT and CoAP, the vehicular networking (V2X) revocation protocol). Albeit available model 
checking tools are promising but do not sufficiently take human factors into account. 
First, the possibility of human error is not reflected in state-of-the-art symbolic model checking tools by  
default. Second, usability challenges of these tools are among the main reasons why they have not yet  
gained wide acceptance in industrial use cases and are currently only applied in academic circles.

3.8.	 Analytical Toolbox 

An important aspect to operate cyber physical system in a secure and safe manner is to have a constant 
overview of the current status and system activities. If a deviation from the expected behavior is detected, 
this anomaly may be an indication of a security breach caused by an attack to the system.

Security experts are often unaware of the attack patterns and intrusions. Thus, defining patterns in data for 
algorithmic detection of attacks and intrusions is not feasible. Even if researchers and security experts iden-
tify some of these patterns, the attackers will move on to other or improved approaches and tools. For this 
reason, companies are seeking for software tools to support them in their task to monitor and understand 
the risk and security threats within their systems. 

One approach to this problem is to use machine learning for anomaly detection. It is similar to outlier 
detection in statistics. The general approach is to train models that represent the typical system behaviour 
and then identify deviations from it. These deviations are the anomalies. It is of importance to note that this 
approach does not assume any knowledge about the attacks, tools for attacking, or about the attackers. It 
is a semi-supervised machine learning approach.

3.9.	 Formal Analysis of the Integrated Circuits

Different mathematical modelling and formal verification-based vulnerability analysis techniques of integra-
ted circuits have been published and proposed. The analysis of security vulnerability of Integrated Circuits 
using conventional design-time validation and verification techniques (like simulations, emulations, etc.) 
is generally a computationally intensive task and incomplete by nature, especially under limited resources 
and time constraints. 

3.10.	 Anomaly Detection in Vehicular Ad-Hoc Network

Vehicular ad-hoc network is emerging as the prominent communication framework for autonomous vehic-
les. However, due to complex, dynamic, and heterogeneous communication network topologies, protocols, 
and devices, these networks are vulnerable to several security threats, i.e., information leakage, denial-
of-service. Therefore, IoT4CPS developed a novel methodology that leverages the statistical modelling of 
communication patterns (i.e., Hurst Exponent) to generate a single parameter-based unique signature for  
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a particular type of communicating command.  These signatures are then compared with the runtime  
communication pattern modelling to identify anomalous communication behavior. 

 
3.11. IoT Discovery and Classification 

Based on the cyber kill chain, which describes the steps an external attacker performs to penetrate a 
system, network reconnaissance both external and internal reconnaissance can be the basis for lateral 
movement within a network. There are different tools available, which support administrators to perform a 
network scan or network audit. With the introduction of IoT technology and their topological peculiarities, 
in particular a concise and up-to-date overview of the network topology is increasingly difficult to achieve. 
The huge number of intertwining devices and protocols is making it increasingly tedious to create a reliable 
picture of the network. That is especially the case in cyber-physical environments, such as smart factories.
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4.1.	 Automotive Ethernet Protection Profile

Ethernet is currently emerging as an increasingly important vehicular network bus due to the fact that two 
cost-effective physical layers are available for automotive Ethernet (IEEE 802.3 100BASE-T1 and 1000BA-
SE-T1) and that the real-time and robustness properties have been improved by the IEEE 802.1 AVB  
(Audio/Video-Bridging) and IEEE 802.1 TSN (Time Sensitive Networking) standards. 
IoT4CPS has defined an experimental version of a protection profile for automotive networks based on 
Ethernet. This protection profile specifies the Target of Evaluation (TOE) and outlines the security problem, 
security objectives, as well as formal Security Functional Requirements (SFRs) and different Evaluation 
Assurance Levels (EALs).

The defined TOE consists of Deterministic Ethernet switches and CAN gateways and the wire harness that 
connects the switches to each other as well as the wire harness connecting the user to the TOE. The TOE is 
completely located inside a car and the considered in-vehicle network architectures cover multiple com-
munication standards, including, Audio-Video Bridging, Time-Sensitive Networking, and Time-Triggered 
Ethernet in combination with a BroadR-Reach® physical layer. A vendor implementing this protection profile 
will decide on the appropriate EAL case by case.

4.2.	 Formal Verification of Side-Channel Protected Hardware Implementation

Side-channel attacks in general and in particular power-analysis attacks are a severe threat to implemen-
tations of cryptographic algorithms. One approach towards counteracting power analysis attacks is to mask 
the intermediate results of a cryptographic algorithm. Many approaches to efficiently mask implementati-
ons of cryptographic algorithms have been proposed in the last two decades. However, many attacks have 
also been found. Consequently, there is a significant focus on formally verifying masked implementations.
IoT4CPS has demonstrated that first-order masking is theoretically possible with only two random one-bit 
masks. As a first practical contribution, we designed a masked AND gate that allows reusing randomness 
from its inputs safely [1].
Based on our findings, we introduce a simple rule-based system. These rules can be encoded in Simulta-
neous multithreading-2 statements and they are then used to automatically check whether the masking 
approach is directly applicable to an unprotected implementation or if modifications (mask changes) are 
required. Upon acceptance, our tool synthesizes a securely masked implementation for a given set of  
additional constraints like the used mask encoding. We then show how our approach can be applied to 
larger implementations and demonstrate its feasibility and its impact on a full AES-128 encryption-only  
implementation. With our approach, we successfully designed the first formally verified AES Substitution-
box design that requires only two random bits for the initial sharing of its inputs and requires no online  
randomness to achieve first-order security in the probing model [2]. Even when going for a full AES imple-
mentation, the randomness requirements do not increase further.

4.	RESULTS
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4.3. Hardware Property Checks

IoT4CPS developed a run-time methodology for Hardware Trojans detection that employs a multi-parameter 
statistical traffic modelling of the communication channel in a given System-on-Chip (SoC). The proposed 
methodology leverages the statistical traffic modelling of communication channels in the SoC to sniff the 
possible anomalies in 3rd Party  Intellectural Property (3PIP) units [3]. The proposed methodology consists 
of the following three key steps.

Statistical modelling of communication behavior: To extract the golden communication behavior that can 
be used during the run-time for HT detection. We assume that in an SoC at least one of the IPs is trusted, 
and by analyzing the communication of the trusted IP, we can extract the requires golden behavior. There-
fore, we propose to statistically model the normal communication traffic of the trusted IP, during the design 
phase of the SoC. This behavior is extracted by obtaining a statistical traffic model, which is characterized 
based on the following observations:  

	 •	How often are the packets injected in the communication channel? 
	 •	On average, how far does each packet travel?
	 •	What portion of the total traffic has been injected in the communication channel by each module?

Hurst Exponent: We propose to choose the Hurst exponent because of the following reasons:

	 •	 It is very sensitive to the distribution of the time series. 
	 •	 It requires very few observations to estimate the Hurst exponent. For example, the minimum
		  observations required for Hurst exponent is approximately 240. 

Hardware Modules Designing: The runtime verification of the Property Specification Language (PSL) 
assertion based on statistical parameters requires hardware modules that compute the above-mentioned 
statistical parameters. Therefore, during the design time, the designer designs these hardware modules and 
integrates them into critical communication channels. Moreover, the designer also translates the statistical 
model of communication behavior into their corresponding PSL assertions. These assertions are embedded 
into the RTL description of SoC along with the traffic monitoring units.

Run-time monitoring: During the run-time or testing time, the values of the statistical parameters calcu-
lated from the corresponding hardware modules are used to verify the associated PSL assertions. If one of 
the assertions fails the verification, then the communication channel is considered as intruded. Note, the 
traffic modelling is done under the premise that at least one of the IPs is trusted.

4.4.	Dynamically Exchangeable Runtime Checkers in HW

True Random Number Generators (TRNG) are essential security building blocks that are used to generate 
random numbers with high entropy. Often, FPGAs (Field Programmable Gate Arrays) are used to host cryp-
tographic functions when random numbers are needed, and many different mechanisms and physical ef-
fects can be exploited to realize TRNGs in FPGA reconfigurable logic. Especially for FPGA implementations, 
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it is difficult to estimate respectively measure the entropy for a TRNG because it may depend on the actual 
final placement within the available FPGA fabric.  Even device variations can have a significant impact on 
the quality of extracted random numbers.

In IoT4CPS Dynamic Partial Reconfiguration is used to build an FPGA Design where individual checker 
modules are realized as HW-Apps that operate like a firewall. These checkers are located next to the inter-
faces of critical modules (e.g. encryption engine or random number generator) and observe data transfers 
and in case a malicious activity is detected, an alarm is triggered via an interrupt line. For example, HW_App 
Checkers can provide functions to assess the randomness of a bit sequence generated by a random number 
generator (RNG). This bit sequence is a part of encrypted data packets. The bit sequence to be tested will 
be extracted from input data under consideration of the input data format and protocol. The functionality 
for the extraction of RNG_data is common for all Checkers and is implemented in a separate sub-module. 
The functions for checking the randomness of data are taken from the NIST test suite, using generic para-
meters that can be configured and are retrieved for statistical evaluation of randomness.

4.5. Threat Modelling

Due to the constantly increasing number of IoT components with different characteristics, it is important 
to use a modelling tool that is as extensible as possible and that allows the specific modelling of data flow 
and processes. In IoT4CPS, various threats have been identified already during the specification of the 
use cases. These were also specifically assigned to individual processes or interacting components. The 
implemented MS Threat Modelling Tool enables the modification of the underlying modelling template and 
therefore it is possible to address individual threats and to specify the IoT4CPS components and data flows 
used in the use cases according to the underlying terminology (STRIDE) [4]. Based on an existing model for 
the Device Connect Use case, the advanced model yield to a final list of 358 threats which then were revie-
wed in cooperation with the developers of this platform in order to have full insight if the respective threats 
are applicable or not. Thus, out of the 358 generated threats, 246 threats were identified which resulted in 
the same mitigation even though the threats might occur on different places of the system architecture, 74 
threats were not applicable or have been already addressed by the developers, resulting in 38 new threats 
that have to be addressed.  

4.6. Testing

Automated Security Test Generation
Effective security testing has a sweet spot between manual penetration testing, which is time- and re-
source-consuming, and automated fuzzing, which is restricted to detect crashes and has limitations when 
testing complex IoT/IIoT systems.
An architecture and tool support for automated security test case generation has been developed. It 
employs a test adapter to bridge the gap between a domain- and technology-agnostic test generator (e.g., 
a random input fuzzer) and the functional and non-functional aspects of the system under test. The adapter 
is able to communicate with the system under test over IoT/IIoT protocols. A prototype implementation of 
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the adapter is provided for the popular MQTT publish-subscribe messaging protocol. On the side of the test 
case generator, the adapter exposes the system‘s functionality in form of high-level parameterized com-
mands. These commands also check for expected responses of the system under test. For example, that 
after performing a valid connect with authentication, the connection is actually established with the cor-
rect user. This extends the capabilities of the generated test cases beyond simple crash detection used in 
fuzzing. Furthermore, it also allows simulating complex interaction scenarios such as concurrent access to a 
server by multiple clients.

Figure 6: Core Components for automated security test case generation
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The generated test cases can represent valid and invalid interaction scenarios. In the case of invalid sce-
narios, when executed, the tests verify the robustness of the system under test and they check that it 
responds gracefully, e.g., with an error message. The same system behavior is expected for illegal scenarios 
containing malicious interactions that resemble security attacks. A secure and robust system prohibits such 
malicious interactions. It responds with an appropriate error message and continues to operate correctly 
without negative side effects. In our approach, attacks are implemented as an extension to the adapter, 
which allows configuring test generation to create test cases consisting of valid interactions interleaved 
with invalid and malicious interactions. In that way, even complex interaction scenarios where an attack is 
performed after triggering a system error can be automatically generated.
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A demonstrator for automated security testing has been built for the use case of secure data exchange for 
distributed connected devices in an untrusted environment. The approach is shown for data hubs using the 
MQTT messaging protocol as system under test. A total of 21 automated attacks have been implemented 
to generate automated tests that target potential threats. These attacks have been aligned with the above 
mentioned threat model for the Device Connect Use case [5] [6] [7].

A penetration test catalogue was also created for automated security test case generation. The catalogue 
describes test cases, their prerequisites and test steps in order to help cyber security experts, system  
administrators, software developers and software testers not only to test their products in regard to cyber 
security but also to increase awareness and communication during the development and testing processes. 
In addition, this penetration test catalogue can assist the cyber security experts in conducting a penetra-
tion, which is the process of testing computer systems as well as human resources (social engineering) to 
identify security threats and possible vulnerabilities.

4.7. Human Aspects

We discuss the first attempt to integrate human behaviour into automated model checking tools and its sui-
tability for verifying IoT protocols. Basin et al.3 evaluate different authentication protocols and discuss their 
resistance to human error when assuming infallible, fallible, rule-based, and skilled humans. They create 
heuristics which can be applied by secure authentication protocols in general to prevent human error. Our 
evaluation results suggest that these heuristics also apply to IoT protocols and should be taken into 
account when designing authentication protocols for CPSs. In particular, Basin et al.3 suggest to en-
force crucial human operations such as carrying out certain checks as far as possible in order to minimize 
the space for skipping these steps. For instance, the human can be forced to enter a code instead of being 
requested to compare two codes which can be skipped by fallible humans. Denzler4 introduces a tool that 
automatically generates all set of possible errors for a specific protocol. It can be applied in the realm of 
CPS protocols since it offers possibilities to model heterogeneous environments and human knowledge 
bases.
Novel approaches to overcome usability challenges of automated model checking tools and the evaluation 
of their applicability for IoT protocols in comparison to the original tools are presented in Section 7.4 in 
Deliverable 4.2.5 Kobeissi et al.6 introduce a publicly available online tool called Noise Explorer that auto-
matically formally verifies protocols created with the Noise Framework. 

The results of our analysis suggest that since the tool Noise explorer can only be used for handshake proto-
cols, its applicability for model checking protocols of CPS is limited. However, the tool is a step in the right 
direction to make automated model checking tools more usable. In addition to Noise Explorer, Kobeissi 
et al.6 present a novel software called Verifpal for verifying security protocols. It aims to make automated 

3 D. Basin, S. Radomirovic and L. Schmid, “Modeling human errors in security protocols,” 2016 IEEE 29th Computer Security Foundations Symposium 
(CSF), 2016
4 A. Denzler, “Automatic Analysis of Communication Protocols with Human Errors,” 2016
5 https://iot4cps.at/wp-content/uploads/2019/07/IoT4CPS_D4.2_V11-final_formatok.pdf
6 Kobeissi, “Verifpal: Cryptographic Protocol Analysis for Students and Engineers,” Cryptology ePrint Archive, Report 2019/971, 2019
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4.8. Analytical Toolbox
 

To ensure operational security on cyber-physical systems, IoT4CPS developed a set of tools for the iden-
tification of anomalies based on different machine learning and correlation techniques. To cover a wide 
spectrum of possible risks to CPS, anomaly detection is applied on three disjunct levels, all with different 
and independent data sources:

 	 •	 	Network traffic: The data source is mostly TCP/IP information. This includes the IP addresses,
		  TCP connections, size of packets, etc. For networks of cyber physical systems, this network
		  communication data may be very homogenous. For example, data is sent every day at the same time
		  from a cyber physical system. 
 	 •	 Operating system: The data source is comprised mostly of (textual) system logs and application
		  events. This includes information about logins, executed programs, file system operations and so on.
 	 •	 Hardware: The power consumption of particular hardware components together with physical
		  measurements at the hardware level is the data pool for this type of analysis. An example of a data
		  source is the power consumption of the device recorded by some sensors.

On the network level, we use a semi-supervised machine learning approach to detect anomalies [8]. In 
contrast, supervised approaches require training and testing data to be from the same probability distribu-
tion, i.e. it is based on the assumption that the testing set does not contain different behavior from that of 
the training set. This assumption is however not fulfilled in real world applications, as novel attack types are 
expected to occur in the future, as is the case also in the used data set. 

Figure 7: Example of a simple Noise protocol sequence flow (left) and specification of this protocol in the Noise Explorer input language (right)
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model checking more intuitive and usable for engineers. The tool Verifpal offers multiple usability enhan-
cements in comparison to traditional automated model checking tools and can be applied for user-
friendly modeling of CPS protocols.
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Another common issue in real world applications is either highly imbalanced training data set with only 
small proportion of attacks or alternatively only normal observations are available for training.

Thus, we use an anomaly detection technique, which will learn the representation of only normal samples 
and classify as anomaly each observation which is different from the learnt patterns. The advantage is that 
it does not suffer from insufficient number of malicious samples for training and novelties in future data are 
also not a problem as all attacks are considered anomalies. The assumption for this approach to work is 
that the behavior of legitimate users does not change in future. 
Specifically, we train an undercomplete autoencoder on the samples consisting of normal traffic only and 
afterwards to distinguish anomalous observations as those with reconstruction error higher than the se-
lected threshold. This means that the deep learning like structure of the autoencoder is used to learn the 
representation of normal samples and when the reconstruction error will be too high, the sample is consi-
dered to come from different probability distribution and will thus be labeled as an anomaly. 

On the system level, the anomaly detection focuses on processing log data from operating systems and 
applications. The Automatic Event Correlation for Incident Detection (ÆCID) software system [9][10]is used 
as a basis. Since ÆCID uses self-learning and white-listing approaches, it is ideal to process logs produced 
by legacy systems and by appliances with small market shares (like those largely employed in cyber-phy-
sical systems). Furthermore, due to its decentralized architecture with the lightweight AMiner component, 
that can be used on systems with only minimal processing power and memory resources, ÆCID is ideal in 
an IoT environment. 

Figure 8: Anomaly detection performed on the network, system and hardware level of a cyber physical system

Network

Operating system

Hardware
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Consider an attacker who physically influences a sensor value and thus cause local damage. In this exem-
plary case the ÆCID system would identify the following two anomalies at two different points in time: 

 	 •		 14:41: An anomaly that is more likely to be false-positive is detected. The anomaly is triggered
		  because the distribution of certain discrete values in the logs changed. This is due to the fact, that the
		  changes produced a high number of log lines and thus the distribution change occurred.
 	 •		 14:44: The actual sensor value change is detected. The anomaly contained the information that the
		  previous normal distribution of the value has changed to an unknown, unassignable distribution.
		  This is understandable since at this point in time the sensor value had already changed three times.
		  The second anomaly indicates that the attack was successfully detected. The reason the anomaly
		  was not detected immediately after the first change or immediately after each change is because a
		  certain number of values are necessary for a meaningful statistical test. For this reason, detection is
		  delayed until sufficient data is collected.

Finally, anomaly detection on hardware is needed to ensure operational security in the case of a compromi-
sed hardware, i.e. a small piece of hardware that performs a security attack when it gets a trigger (known as 
hardware trojan). The previously discussed approaches on network and system level cannot guarantee the 
privacy of information for such attacks.

The main focus here is to provide security of the basic building blocks of a system-on-chip which consists of 
several trusted and untrusted 3rd party intellectual properties. Therefore, we propose a novel methodology, 
called MacLeR [11], to design a machine learning based run-time hardware trojan detection technique that 
exploits the fine-grained power profiling of the microprocessor (see . MacLeR employs the following ana-
lysis and methods:

 	 1)		To obtain the fine-grained power profiles, we measure the individual power of each pipeline stage
		  with respect to a particular instruction. Such choice is made as the impact of hardware trojans on
		  fine-grained power profiles is relatively better noticeable as compared to the overall power.
 	 2)		To reduce the complexity and detection time, we use an off-chip monitor that collects analog power
		  profiles and converts them into the digital domain. These power profiles are then used first for training
		  a machine learning model at design time, and afterward use this model at run time for detecting
		  hardware trojans. 
 	 3)		To extract the fine-grained power profiles of a microprocessor during the runtime requires multiple
		  power ports. Therefore, to reduce the number of power ports, we use a single power-port current
		  acquisition block and accordingly measure the current in a time-division multiplexing manner. 

As depicted in the lower part the experimental analysis shows that in the case hardware trojan benchmarks 
for MC8051, the trained model provides approximately 98% hardware trojan detection accuracy, and with 
a very small number of false positives and false negatives. However, for other hardware trojan benchmarks, 
MacLeR still provides approximately 90% HT detection accuracy. 
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4.9. 	Formal Analysis of Integrated Circuits

In order to address the completeness, feasibility and coverage issues in formal verification of ICs, IoT4CPS 
developed novel framework for formal analysis of security vulnerabilities called ForASec [12]. It performs a 
comprehensive security analysis providing the complete 100% coverage of parametric behavior (i.e., leaka-
ge power, dynamic power and propagation delay) and process variations. The proposed ForASec consists of 
the following key features (see an overview and design flow in): 

Mathematical modeling of gates for Formal Analysis Tools: Typically, hardware Trojans (HTs) have direct 
or indirect impact side-channel behaviour of ICs. Therefore, to encompass this behavior of HTs, we propose 
the comprehensive mathematical models of basic logic gates, i.e., NOR, NAND and NOT, w.r.t the behavior 
of side-channel parameters while considering the process variations effects on different technology para-
meters, e.g., switch on resistance, oxide capacitance, carrier mobilities, gate capacitance, drain capacitance 
and source capacitance.

A model checking-based analysis methodology to ensure the complete coverage of security vulnerability 
analysis, against the multiple intrusions at different locations, for all gates, nodes and with respect to all 
input patterns. 

A verification/analysis algorithm to address the state-space explosion problem for large-sized circuits, 
while considering the uncertain behavior of side-channel parameters.  

To evaluate the effectiveness of ForASec, we implement certain key basic sequential circuits and all the 
ISCAS89 benchmark in the presence of trust-hub Trojan benchmarks. The experimental results demonstra-
te that ForASec is able to correctly identify the most vulnerable node(s) and the minimum-possible size of 
Stealthy Hardware Trojans (SHTs) that can be detected while analyzing the leakage power. Moreover, it also 
provides approximately 11x to 16x speedup in analysis time compared to state-of-the-art model checking-
based techniques.

4.10. 	Anomaly Detection in Vehicular Ad-Hoc Network

IoT4CPS developed a novel methodology that leverages the statistical modeling of communication patterns 
(i.e., Hurst Exponent) to generate a single parameter-based unique signature for a particular type of com-
municating command. These signatures are compared with the runtime communication pattern modeling 
to identify anomalous communication behavior. The proposed approach was successfully demonstrated on 
the VANET communicating with 802.11p for several datasets, i.e., RioBusses-v2018, VANETjamming2018, 
and VANETjamming2014. This is on-going with expected future improvements. 
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4.11. 	IoT Discovery and Classification 

The implemented network reconnaissance pro-
cedure [13] consists of three main phases. Within 
the first phase, passive scanner modules observe 
the network and gather information about hosts 
in the network. The second phase consists of an 
analyzer module processing the results from the 
passive scanners and determining network ranges 
that will serve as input for subsequent active 
scanners, which form the third phase. 

The iterative toolchain-based scanning approach 
enables the analysis of IoT protocols by adding 
additional scanning tools and analytics algorithms. 
It supports IPv6 network scans using the neig-
hbor discovery protocol (router advertisement 
and neighbor advertisement) as well as Bluetooth and LoRa.networks scans. Figure 9 shows the dialog that 
pops up when the user initiates an IoT scan. Some basic information must be provided by the user before 
the discovery process can start.

Figure 10 shows the determined network graph generated from the data collected by the IoT discovery 
process displaying the identified node and edge objects of the underlying network topology connected via 
Ethernet, LoRa and Bluetooth.

Figure 9: User Interface-IoT scan 
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Figure 10: Resulting topology graph of the IoT scan 
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	 Security Approach 	 Automated Driving	 Smart Production	 Applicable to other Domains

Automotive Ethernet protection profile 

Formal verification of side-channel 
protected hardware implementation

Hardware property checks

Dynamically exchangeable runtime 
checkers in HW

Threat modelling

Testing

Human aspects

Analytical toolbox

Formal analysis of integrated circuits

Anomaly detection in vehicular 
ad-hoc network

IoT discovery and classification

5.	POSSIBLE EXPLOITATION

	 not applicable

	 applicable with major adaptation effort

	 applicable with medium adaptation effort

	 applicable with minor adaptation effort

	 applicable without adaptation 

The comprehensive set of approaches assures security by both formal and empiric methods to detect  
anomalies and uncover vulnerabilities at different system levels. These are demonstrated and evaluated 
via IoT-based applications for automated driving and for smart production. Nevertheless, some of the 
described approaches are portable and can be used in other industrial domains as well. In certain cases, 
minor or medium adaptions are needed for the specific application area.
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